

The CERT® Guide to
Coordinated Vulnerability Disclosure

Allen D. Householder
Garret Wassermann
Art Manion
Chris King

August 2017

SPECIAL REPORT
CMU/SEI-2017-SR-022

CERT Division

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://www.sei.cmu.edu

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not
be construed as an official Government position, policy, or decision, unless designated by other docu-
mentation.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom
AFB, MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-
uted in written or electronic form without requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission should be directed to the Software En-
gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM17-0508

mailto:permission@sei.cmu.edu

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table of Contents

Preface vii

Acknowledgments x

Executive Summary xi

1 Introduction 1
1.1 Coordinated Vulnerability Disclosure is a Process, Not an Event 1
1.2 CVD Context and Terminology Notes 2

1.2.1 Vulnerability 2
1.2.2 Exploits, Malware, and Incidents 2
1.2.3 Vulnerability Response (VR) 3
1.2.4 Vulnerability Discovery 3
1.2.5 Coordinated Vulnerability Disclosure 3
1.2.6 Vulnerability Management (VM) 5
1.2.7 Products and Instances 6
1.2.8 Incident vs. Vulnerability Response 6

1.3 Why Coordinate Vulnerability Disclosures? 6
1.4 Previewing the Remainder of this Document 7

2 Principles of Coordinated Vulnerability Disclosure 8
2.1 Reduce Harm 8
2.2 Presume Benevolence 9
2.3 Avoid Surprise 10
2.4 Incentivize Desired Behavior 10
2.5 Ethical Considerations 11

2.5.1 Ethics in Related Professional Societies 11
2.5.2 Journalism Ethics 11

2.6 Process Improvement 12
2.6.1 CVD and the Security Feedback Loop 12
2.6.2 Improving the CVD Process Itself 13

2.7 CVD as a Wicked Problem 13

3 Roles in CVD 15
3.1 Finder 16
3.2 Reporter 17
3.3 Vendor 17

3.3.1 Vendor as the Introducer of Vulnerabilities 18
3.3.2 Vendor Vulnerability Response Process 18
3.3.3 Vendor Sub-Roles 19

3.4 Deployer 20
3.4.1 Deployer Vulnerability Response Process 21

3.5 Coordinator 22
3.5.1 Computer Security Incident Response Team (CSIRT) 22
3.5.2 CSIRT with National Responsibility 23
3.5.3 Product Security Incident Response Team (PSIRT) 23
3.5.4 Security Research Organizations 23
3.5.5 Bug Bounties and Commercial Brokers 23
3.5.6 Information Sharing and Analysis Organizations (ISAOs) and Centers (ISACs) 24
3.5.7 Reasons to Engage a Coordinator 24

3.6 Other Roles and Variations 26

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.6.1 Users 26
3.6.2 Integrator 26
3.6.3 Cloud and Application Service Providers 26
3.6.4 Internet of Things 26
3.6.5 Mobile Platforms and Applications 27
3.6.6 Governments 27

4 Phases of CVD 29
4.1 Discovery 30

4.1.1 Why Look for Vulnerabilities? 31
4.1.2 Avoid Unnecessary Risk in Finding Vulnerabilities 31

4.2 Reporting 32
4.2.1 Create Secure Channels for Reporting 33
4.2.2 Encourage Reporting 33
4.2.3 Reduce Friction in the Reporting Process 33
4.2.4 Providing Useful Information 34

4.3 Validation and Triage 35
4.3.1 Validating Reports 35
4.3.2 Triage Heuristics 36

4.4 Remediation 37
4.4.1 Isolating the Problem 37
4.4.2 Fix the Problem 37
4.4.3 Mitigate What You Cannot Fix 37

4.5 Gaining Public Awareness 38
4.5.1 Prepare and Circulate a Draft 39
4.5.2 Publishing 39
4.5.3 Vulnerability Identifiers Improve Response 40
4.5.4 Where to Publish 40

4.6 Promote Deployment 40
4.6.1 Amplify the Message 41
4.6.2 Post-Publication Monitoring 41

5 Process Variation Points 42
5.1 Choosing a Disclosure Policy 42
5.2 Disclosure Choices 43
5.3 Two-Party CVD 44
5.4 Multiparty CVD 44

5.4.1 Multiple Finders / Reporters 44
5.4.2 Complicated Supply Chains 45
5.4.3 Mass Notifications for Multiparty CVD 46

5.5 Response Pacing and Synchronization 46
5.5.1 When One Party Wants to Release Early 46
5.5.2 Communication Topology 47
5.5.3 Motivating Synchronized Release 48

5.6 Maintaining Pre-Disclosure Secrecy 48
5.6.1 Coordinating Further Downstream 49
5.6.2 Do You Include Deployers? 49
5.6.3 Complex Communications Reduce Trust 49

5.7 Disclosure Timing 49
5.7.1 Conference Schedules and Disclosure Timing 49
5.7.2 Vendor Reputation and Willingness to Cooperate 50
5.7.3 Declarative Disclosure Policies Reduce Uncertainty 50
5.7.4 Diverting from the Plan 50
5.7.5 Releasing Partial Information Can Help Adversaries 51

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6 Troubleshooting CVD 52
6.1 Unable to Find Vendor Contact 52
6.2 Unresponsive Vendor 52
6.3 Somebody Stops Replying 53
6.4 Intentional or Accidental Leaks 53
6.5 Independent Discovery 54
6.6 Active Exploitation 55
6.7 Relationships that Go Sideways 55
6.8 Hype, Marketing, and Unwanted Attention 55

6.8.1 The Streisand Effect 55
6.9 What to Do When Things Go Wrong 56

6.9.1 Keep Calm and Carry On 56
6.9.2 Avoid Legal Entanglements 56
6.9.3 Recognize the Helpers 56
6.9.4 Consider Publishing Early 56
6.9.5 Engage a Third-Party Coordinator 57
6.9.6 Learn from the Experience 57

7 Operational Considerations 58
7.1 Tools of the Trade 58

7.1.1 Secure Communication Channels 58
7.1.2 Contact Management 60
7.1.3 Bug Bounty Platforms 60
7.1.4 Case and Bug Tracking 61
7.1.5 Code and System Inventories 61
7.1.6 Test Bench and Virtualization 62

7.2 Operational Security 63
7.2.1 PGP/GPG Key Management 63
7.2.2 Handling Sensitive Data 65
7.2.3 Don’t Automatically Trust Reports 65

7.3 CVD Staffing Considerations 66
7.3.1 Beware Analyst Burnout 66

8 Open Problems in CVD 68
8.1 Vulnerability IDs and DBs 68

8.1.1 On the Complexities of Vulnerability Identity 68
8.1.2 What CVE Isn’t 69
8.1.3 Every Vulnerability Database Makes Choices 69
8.1.4 Where We Are vs. Where We Need to Be 70
8.1.5 Vulnerability IDs, Fast and Slow 71
8.1.6 A Path Toward VDB Interoperability 72
8.1.7 Looking Ahead 72

8.2 IoT and CVD 73
8.2.1 Black Boxes 73
8.2.2 Unrecognized Subcomponents 73
8.2.3 Long-Lived and Hard-to-Patch 73
8.2.4 New Interfaces Bring New Threats 74
8.2.5 Summarizing the IoT’s Impact on CVD 74

9 Conclusion 75

Appendix A – On the Internet of Things and Vulnerability Analysis 76

Appendix B – Traffic Light Protocol 81

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix C – Sample Vulnerability Report Form 83

Appendix D – Sample Vulnerability Disclosure Document 85

Appendix E – Disclosure Policy Templates 87

Bibliography 89

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Figures

Figure 1: CVD Role Relationships 15
Figure 2: Coordination Communication Topologies 47

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Tables

Table 1: I Am the Cavalry’s Finder / Reporter Motivations 9

Table 2: Mapping CVD Roles to Phases 30

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Preface

Software and software-based products have vulnerabilities. Left unaddressed, those vulnerabilities
expose to risk the systems on which they are deployed and the people who depend on them. In or-
der for vulnerable systems to be fixed, those vulnerabilities must first be found. Once found, the
vulnerable code must be patched or configurations must be modified. Patches must be distributed
and deployed. Coordinated Vulnerability Disclosure (CVD) is a process intended to ensure that
these steps occur in a way that minimizes the harm to society posed by vulnerable products. This
guide provides an introduction to the key concepts, principles, and roles necessary to establish a
successful CVD process. It also provides insights into how CVD can go awry and how to respond
when it does so.

In a nutshell, CVD can be thought of as an iterative process that begins with someone finding a
vulnerability, then repeatedly asking “what should I do with this information?” and “who else
should I tell?” until the answers are “nothing,” and “no one.” But different parties have different
perspectives and opinions on how those questions should be answered. These differences are what
led us to write this guide.

The CERT Coordination Center has been coordinating the disclosure of vulnerability reports since
its inception in 1988. Although both our organization and the Internet have grown and changed in
the intervening decades, many of the charges of our initial charter remain central to our mission:
to facilitate communication among experts working to solve security problems; to serve as a cen-
tral point for identifying and correcting vulnerabilities in computer systems; to maintain close ties
with research activities and conduct research to improve the security of existing systems; and to
serve as a model for other incident response organizations.

If we have learned anything in nearly three decades of coordinating vulnerability disclosures at
the CERT/CC, it is that there is no single right answer to many of the questions and controversies
surrounding the disclosure of information about software and system vulnerabilities. In the tradi-
tional computing arena, most vendors and researchers have settled into a reasonable rhythm of al-
lowing the vendor some time to fix vulnerabilities prior to publishing a vulnerability report more
widely. Software as a service (SAAS) and software distributed through app stores can often fix
and deploy patches to most customers quickly. On the opposite end of the spectrum, we find
many Internet of Things (IoT) and embedded device vendors for whom fixing a vulnerability
might require a firmware upgrade or even physical replacement of affected devices, neither of
which can be expected to happen quickly (if at all). This diversity of requirements forces vendors
and researchers alike to reconsider their expectations with respect to the timing and level of detail
provided in vulnerability reports. Coupled with the proliferation of vendors who are relative nov-
ices at internet-enabled devices and are just becoming exposed to the world of vulnerability re-
search and disclosure, the shift toward IoT can be expected to reinvigorate numerous disclosure
debates as the various stakeholders work out their newfound positions.

Here’s just one example: in 2004, it was considered controversial [1] when the CERT/CC advised
users to “use a different browser” in response to a vulnerability in the most popular browser of the

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY viii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

day (VU#713878) [2]. However, consider the implications today if we were to issue similar ad-
vice: “use a different phone,” “drive a different car,” or “use a different bank.” If those phrases
give you pause (as they do us), you have recognized how the importance of this issue has grown.

We often find that vendors of software-centric products are not prepared to receive and handle
vulnerability reports from outside parties, such as the security research community. Many also
lack the ability to perform their own vulnerability discovery within their development lifecycles.
These difficulties tend to arise from one of two causes: (a) the vendor is comparatively small or
new and has yet to form a product security incident response capability or (b) the vendor has deep
engineering experience in its traditional product domain but has not fully incorporated the effect
of network enabling its products into its engineering quality assurance practice. Typically, ven-
dors in the latter group may have very strong skills in safety engineering or regulatory compli-
ance, yet their internet security capability is lacking.

Our experience is that many novice vendors are surprised by the vulnerability disclosure process.
We frequently find ourselves having conversations that rehash decades of vulnerability coordina-
tion and disclosure conversations with vendors who appear to experience something similar to the
Kübler-Ross stages of grief (denial, anger, bargaining, depression, and acceptance) during the
process.

Furthermore, we have observed that overly optimistic threat models are de rigueur among IoT
products. Many IoT products are developed with what can only be described as naïve threat mod-
els that drastically underestimate the hostility of the environments into which the product will be
deployed.

Even in cases where developers are security-knowledgeable, often they are composing systems
out of components or libraries that may not have been developed with the same degree of security
consideration. This weakness is especially pernicious in power- or bandwidth-constrained prod-
ucts and services where the goal of providing lightweight implementations can supersede the need
to provide a minimum level of security. We believe this is a false economy that only defers a
much larger cost when the product or service has been deployed, vulnerabilities are discovered,
and remediation is difficult.

We anticipate that many of the current gaps in security analysis knowledge and tools surrounding
the emergence of IoT devices will begin to close over the next few years. However, it may be
some time before we can fully understand how the products already available today, let alone to-
morrow, will impact the security of the networks onto which they are placed. The scope of the
problem does not appear to contract any time soon.

We already live in a world where mobile devices outnumber traditional computers, and IoT stands
to dwarf mobile computing in terms of the sheer number of devices within the next few years. As
vulnerability discovery tools and techniques evolve into this space, so must our tools and pro-
cesses for coordination and disclosure. Assumptions built into many vulnerability handling pro-
cesses about disclosure timing, coordination channels, development cycles, scanning, patching,
and so forth will need to be reevaluated in the light of hardware-based systems that are likely to
dominate the future internet.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ix
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

About This Report

This is not a technical document. You will not learn anything new about fuzzing, debugging, ROP
gadgets, exploit mitigations, heap spraying, exception handling, or anything about how computers
work by reading this report. What you will learn is what happens to that knowledge and how its
dissemination is affected by the human processes of communications and social behavior in the
context of remediating security vulnerabilities.

This is not a history. We won’t spend much time at all on the history of disclosure debates, or the
fine details of whether collecting or dropping zero-days is always good or always bad. We will
touch on these ideas only insofar as they intersect with the current topic of coordinated vulnerabil-
ity disclosure.

This is not an indictment. We are not seeking to place blame on one party or another for the suc-
cess or failure of any given vulnerability disclosure process. We’ve seen enough disclosure cases
to know that people make choices based on their own values coupled with their assessment of a
situation, and that even in cases where everyone agrees on what should happen, mistakes and un-
foreseeable events sometimes alter the trajectory from the plan.

This is not a standard. We assert no authority to bless the information here as “the way things
ought to be done.” In cases where standards exist, we refer to them, and this report is informed by
them. In fact, we’ve been involved in creating some of them. But the recommendations made in
this report should not be construed as “proper,” “correct,” or “ideal” in any way. As we’ll show,
disclosing vulnerabilities presents a number of difficult challenges, with long-reaching effects.
The recommendations found here do, however, reflect our observation over the past few decades
of what works (and what doesn’t) in the pursuit of reducing the vulnerability of software and re-
lated products.

This is a summary of what we know about a complex social process that surrounds humans trying
to make the software and systems they use more secure. It’s about what to do (and what not to)
when you find a vulnerability, or when you find out about a vulnerability. It’s written for vulnera-
bility analysts, security researchers, developers, and deployers; it’s for both technical staff and
their management alike. While we discuss a variety of roles that play a part in the process, we in-
tentionally chose not to focus on any one role; instead we wrote for any party that might find itself
engaged in coordinating a vulnerability disclosure.

We wrote it in an informal tone to make the content more approachable, since many readers’ in-
terest in this document may have been prompted by their first encounter with a vulnerability in a
product they created or care about. The informality of our writing should not be construed as a
lack of seriousness about the topic, however.

In a sense, this report is a travel guide for what might seem a foreign territory. Maybe you’ve
passed through once or twice. Maybe you’ve only heard about the bad parts. You may be uncer-
tain of what to do next, nervous about making a mistake, or even fearful of what might befall you.
If you count yourself as one of those individuals, we want to reassure you that you are not alone;
you are not the first to experience events like these or even your reaction to them. We’re locals.
We’ve been doing this for a while. Here’s what we know.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY x
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Acknowledgments

The material in the CERT® Guide to Coordinated Vulnerability Disclosure inherits from 29 years
of analyzing vulnerabilities and navigating vulnerability disclosure issues at the CERT Coordina-
tion Center (CERT/CC). While a few of us may be the proximate authors of the words you are
reading, many of the ideas these words represent have been bouncing around at CERT for years in
one brain or another. We’d like to acknowledge those who contributed their part to this endeavor,
whether knowingly or not:

Jared Allar, Jeff Carpenter, Cory Cohen, Roman Danyliw, Will Dormann, Chad Dougherty,
James T. Ellis, Ian Finlay, Bill Fithen, Jonathan Foote, Jeff Gennari, Ryan Giobbi, Jeff Havrilla,
Shawn Hernan, Allen Householder, Chris King, Dan Klinedinst, Joel Land, Jeff Lanza, Todd
Lewellen, Navika Mahal, Art Manion, Joji Montelibano, Trent Novelly, Michael Orlando, Rich
Pethia, Jeff Pruzynski, Robert Seacord, Stacey Stewart, David Warren, and Garret Wassermann.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xi
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Executive Summary

Software-based products and services have vulnerabilities—conditions or behaviors that allow the
violation of an explicit or implicit security policy. This should come as no surprise to those famil-
iar with software. What many find surprising nowadays is just how many products and services
should be considered software based. The devices we depend on to communicate and coordinate
our lives, transport us from place to place, and keep us healthy have in recent years become more
and more connected both to each other and to the world at large. As a result, society has devel-
oped an increasing dependence on software-based products and services along with a commensu-
rate need to address the vulnerabilities that inevitably accompany them.

Adversaries take advantage of vulnerabilities to achieve goals at odds with the developers, de-
ployers, users, and other stakeholders of the systems we depend on. Notifying the public that a
problem exists without offering a specific course of action to remediate it can result in giving an
adversary the advantage while the remediation gap persists. Yet there is no optimal formula for
minimizing the potential for harm to be done short of avoiding the introduction of vulnerabilities
in the first place. In short, vulnerability disclosure appears to be a wicked problem.1

Coordinated Vulnerability Disclosure (CVD) is a process for reducing adversary advantage while
an information security vulnerability is being mitigated. CVD is a process, not an event. Releasing
a patch or publishing a document are important events within the process, but do not define it.

CVD participants can be thought of as repeatedly asking these questions: What actions should I
take in response to knowledge of this vulnerability in this product? Who else needs to know what,
and when do they need to know it? The CVD process for a vulnerability ends when the answers to
these questions are nothing, and no one.

CVD should not be confused with Vulnerability Management (VM). VM encompasses the pro-
cess downstream of CVD, once the vulnerability has been disclosed and deployers must take ac-
tion to respond. Section 1 introduces the CVD process and provides notes on relevant terminol-
ogy.

Principles of CVD

Section 2 covers principles of CVD, including the following:

• Reduce Harm –Decrease the potential for damage by publishing vulnerability information;
using exploit mitigation technologies; reducing days of risk; releasing high-quality patches;
and automating vulnerable host identification and patch deployment.

• Presume Benevolence – Assume that any individual who has taken the time and effort to
reach out to a vendor or a coordinator to report an issue is likely benevolent and sincerely
wishes to reduce the harm of the vulnerability.

1 The definition of a wicked problem based on an article by Rittel and Webber [41] is given in Section 2.7.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• Avoid Surprise – Surprise tends to increase the risk of a negative outcome from the disclo-
sure of a vulnerability and should be avoided.

• Incentivize Desired Behavior – It’s usually better to reward good behavior than try to pun-
ish bad behavior. Incentives are important as they increase the likelihood of future coopera-
tion between security researchers and organizations.

• Ethical Considerations – A number of ethical guidelines from both technical and journal-
istic professional societies can find application in the CVD process.

• Process Improvement – Participants in the CVD process should learn from their experience
and improve their process accordingly. CVD can also provide important feedback to an or-
ganization’s Software Development Lifecycle (SDL).

• CVD as a Wicked Problem – As we’ve already mentioned, vulnerability disclosure is a
multifaceted problem for which there appear to be no “right” answers, only “better” or
“worse” solutions in a given context.

Roles in CVD

CVD begins with finding vulnerabilities and ends with the deployment of patches or mitigations.
As a result, several distinct roles and stakeholders are involved in the CVD process. These include
the following:

• Finder (Discoverer) – the individual or organization that identifies the vulnerability
• Reporter – the individual or organization that notifies the vendor of the vulnerability
• Vendor – the individual or organization that created or maintains the product that is vulnera-

ble
• Deployer – the individual or organization that must deploy a patch or take other remediation

action
• Coordinator – an individual or organization that facilitates the coordinated response process

It is possible and often the case that individuals and organizations play multiple roles. For exam-
ple, a cloud service provider might act as both vendor and deployer, while a researcher might act
as both finder and reporter. A vendor may also be both a deployer and a coordinator.

Reasons to engage a coordinator include reporter inexperience, reporter capacity, multiparty coor-
dination cases, disputes among CVD participants, and vulnerabilities having significant infra-
structure impacts.

Users, integrators, cloud and application service providers, Internet of Things (IoT) and mobile
vendors, and governments are also stakeholders in the CVD process. We cover these roles and
stakeholders in more detail in Section 3.

Phases of CVD

The CVD process can be broadly defined as a set of phases, as described in Section 4. Although
these phases may sometimes occur out of order, or even recur within the handling of a single vul-
nerability case (for example, each recipient of a case may need to independently validate a report),
they often happen in the following order:

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xiii
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• Discovery – Someone discovers a vulnerability in a product.
• Reporting – The product’s vendor or a third-party coordinator receives a vulnerability re-

port.
• Validation and Triage – The receiver of a report validates it to ensure accuracy before pri-

oritizing it for further action.
• Remediation – A remediation plan (ideally a software patch, but could also be other mecha-

nisms) is developed and tested.
• Public Awareness – The vulnerability and its remediation plan is disclosed to the public.
• Deployment – The remediation is applied to deployed systems.

CVD Process Variation

As an endeavor of human coordination at both the individual and organization levels, the CVD
process can vary from participant to participant, over time, and in varying contexts. Some points
of variation include those below:

• Choosing a disclosure policy – Disclosure policies may need to be adapted for different or-
ganizations, industries, and even products due to variations in business needs such as patch
distribution or safety risks.

• Coordinating among multiple parties – Coordination between a single finder and a single
vendor is relatively straightforward, but cases involving multiple finders, or complex supply
chains often require extra care.

• Pacing and synchronization – Different organizations work at different operational tempos,
which can increase the difficulty of synchronizing release of vulnerability information along
with fixes.

• Coordination Scope – CVD participants must decide how far to go with the coordination
process. For example, it may be preferable to coordinate the disclosure of critical infrastruc-
ture vulnerabilities all the way out to the system deployers, while for a mobile application it
may be sufficient to notify the developer and simply allow the automatic update process take
it from there.

Variation points in the CVD process are covered in Section 5.

Troubleshooting CVD

CVD does not always go the way it’s supposed to. We have encountered a number of obstacles
along the way, which we describe in Section 6. These are among the things that can go wrong:

• No vendor contact available – This can occur because a contact could not be found, or the
contact is unresponsive.

• Participants stop responding – Participants in CVD might have other priorities that draw
their attention away from completing a CVD process in progress.

• Information leaks – Whether intentional or not, information that was intended for a private
audience can find its way to others not involved in the CVD process.

• Independent discovery – Any vulnerability that can be found by one individual can be
found by another, and not all of them will tell you about it.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xiv
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• Active exploitation – Evidence that a vulnerability is being actively exploited by adversaries
often implies a need to accelerate the CVD process to reduce users’ exposure to risk.

• Relationships go awry – CVD is a process of coordinating human activities. As such, its
success depends on building relationships among the participants.

• Hype, marketing, and unwanted attention – The reasons for reporting and disclosing vul-
nerabilities are many, but in some cases they can be used as a tool for marketing. This is not
always conducive to the smooth flow of the CVD process.

When things do go askew in the course of the CVD process, it’s often best to remain calm, avoid
legal entanglements, and recognize that the parties involved are usually trying to do the right
thing. In some cases, it may help to consider publishing earlier than originally planned or to en-
gage a third-party coordinator to assist with mediating disputes. Regardless of the resulting action,
CVD participants should learn from the experience.

Operational Considerations

Participation in the CVD process can be improved with the support of tools and operational pro-
cesses such as secure communications (e.g., encrypted email or https-enabled web portals), con-
tact management, case tracking systems, code and system inventories, and test environments such
as virtualized labs.

Operational security should also be considered. CVD participants will need to address key man-
agement for whatever communications encryption they decide to use. Policy guidelines for han-
dling sensitive data should be clearly articulated within organizations. Furthermore, recipients of
vulnerability reports (e.g., vendors and coordinators) should be wary of credulous action in re-
sponse to reports. Things are often not what they originally seem. Reporters may have misinter-
preted the impact of a vulnerability to be more or less severe than it actually is. Adversaries may
be probing an organization’s vulnerability response process to gain information or to distract from
other events.

As happens in many security operations roles, staff burnout is a concern for managers of the CVD
process. Job rotations and a sustained focus on CVD process improvement can help.

Further discussion of operational considerations can be found in Section 7.

Open Problems in CVD

Organizations like the CERT Coordination Center have been coordinating vulnerability disclo-
sures for decades, but some issues remain to be addressed. The emergence of a wider diversity of
software-based systems in recent years has led to a need to revisit topics once thought nearly re-
solved. Vulnerability identity has become a resurgent issue in the past few years as the need to
identify vulnerabilities for purposes of CVD and vulnerability management has spread far beyond
the arena of traditional computing. A number of efforts are currently underway to improve the
way forward.

More broadly, the rising prevalence of IoT products and their corresponding reliance on embed-
ded systems with constrained hardware, power, bandwidth, and processing capabilities has led to

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xv
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

a need to rethink CVD in light of assumptions that are no longer valid. Patching may be compara-
tively easy on a Windows system deployed on an enterprise network. Patching the firmware of a
home router deployed to all the customers of a regional ISP is decidedly not so simple. The desk-
top system the doctor uses to write her notes might be patched long before the MRI machine that
collected the data she’s analyzing. Fixing a vulnerable networked device atop a pipeline in a re-
mote forest might mean sending a human out to touch it. Each of these scenarios comes with an
associated cost not usually factored into the CVD process for more traditional systems.

The way industries, governments, and society at large will address these issues remains to be
seen. We offer Section 8 in the hope that it sheds some light on what is already known about these
problems.

Conclusion and Appendices

Vulnerability disclosure practices no longer affect only the computer users among us. Smart
phones, ATMs, MRI machines, security cameras, cars, airplanes, and the like have become net-
work-enabled software-dependent systems, making it nearly impossible to avoid participating in
the world without the potential to be affected by security vulnerabilities. CVD is not a perfect so-
lution, but it stands as the best we’ve found so far. We’ve compiled this guide to help spread the
practice as widely as possible.

Five appendices are provided containing background on IoT vulnerability analysis, Traffic Light
Protocol, examples of vulnerability report forms and disclosure templates, and pointers to five
publicly available disclosure policy templates. An extensive bibliography is also included.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY xvi
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Abstract

Security vulnerabilities remain a problem for vendors and deployers of software-based systems
alike. Vendors play a key role by providing fixes for vulnerabilities, but they have no monopoly
on the ability to discover vulnerabilities in their products and services. Knowledge of those vul-
nerabilities can increase adversarial advantage if deployers are left without recourse to remediate
the risks they pose. Coordinated Vulnerability Disclosure (CVD) is the process of gathering infor-
mation from vulnerability finders, coordinating the sharing of that information between relevant
stakeholders, and disclosing the existence of software vulnerabilities and their mitigations to vari-
ous stakeholders including the public. The CERT Coordination Center has been coordinating the
disclosure of software vulnerabilities since its inception in 1988. This document is intended to
serve as a guide to those who want to initiate, develop, or improve their own CVD capability. In
it, the reader will find an overview of key principles underlying the CVD process, a survey of
CVD stakeholders and their roles, and a description of CVD process phases, as well as advice
concerning operational considerations and problems that may arise in the provision of CVD and
related services.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1 Introduction

Imagine you’ve found a vulnerability in a product. What do you do with this knowledge?

Maybe nothing. There are many situations in which it’s perfectly reasonable to decide to go on
about your business and let somebody else deal with it. You’re busy. You have more important
things to do. It’s not your code, so it’s not your problem. Or maybe it is your code, but you wrote
it a long time ago, and it will take a lot of effort to even try to fix it. Maybe the product has al-
ready reached end-of-life. Or perhaps fixing this bug will delay the launch of your new product
that will supersede this version anyway. There are plenty of good reasons that it might not be
worth the hassle of fixing it or reporting it. Although this is what a mathematician would refer to
as a degenerate case of the disclosure process in which no disclosure occurs, it’s important to rec-
ognize that even starting the process of disclosure is a choice one must consider carefully.

Often, though, you will likely feel a need to take some action in response to this newfound
knowledge of a vulnerability. If it’s your product, you might immediately set off to understand the
root cause of the problem and fix it. Once fixed, you probably will want to draw attention to the
fix so your product’s users can protect themselves.

Or perhaps the product is other people’s responsibility to fix, and you want to inform them of the
existence of this vulnerability.

This is where the process of Coordinated Vulnerability Disclosure (CVD) begins.

1.1 Coordinated Vulnerability Disclosure is a Process, Not an Event

A process is “a series of actions or steps taken in order to achieve a particular end” [3]. Publishing
a document is an action. Releasing a fix is an action. And while both of these are common events
within the CVD process, they do not define it.

Perhaps the simplest description of the CVD process is that it starts with at least one individual
becoming aware of a vulnerability in a product. This discovery event immediately divides the
world into two sets of people: those who know about the vulnerability, and those who don’t. From
that point on, those belonging to the set that knows about the vulnerability iterate on two ques-
tions:

1. What actions should I take in response to this knowledge?
2. Who else needs to know what, and when?

The CVD process continues until the answers to these questions are “nothing,” and “nobody.”

Simple enough? Hardly. If it were, this document would be considerably shorter. But with this
simple iterator in mind, we’ll be better able to frame our discussion.

Ideally, product and service vulnerabilities would be either discovered by the vendor (developer)
of the software product or service itself or reported to the vendor by a third party (finder, re-
porter). Informing vendors enables them to take action to address and correct vulnerabilities. In
most cases, the vendor is the party best suited to correct the vulnerability at its origin. Vendors

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

typically remediate vulnerabilities by developing and releasing an update to the product, also
known as a patch. However, often the vendor issuing an update is just the first step towards reme-
diation of the installed base of vulnerable systems. Deployers must still ensure that patches are de-
ployed in a timely manner to the systems they need to protect. A more detailed discussion of roles
in CVD can be found in Section 3.

1.2 CVD Context and Terminology Notes

Before we proceed to place CVD in context, we start with a few definitions.

1.2.1 Vulnerability

A vulnerability is a set of conditions or behaviors that allows the violation of an explicit or im-
plicit security policy. Vulnerabilities can be caused by software defects, configuration or design
decisions, unexpected interactions between systems, or environmental changes. Successful exploi-
tation of a vulnerability has technical and risk impacts. Vulnerabilities can arise in information
processing systems as early as the design phase and as late as system deployment.

NIST offers the following definitions of vulnerability [4]:

1. “Weakness in an information system, system security procedures, internal controls, or imple-
mentation that could be exploited or triggered by a threat source”

2. “A weakness in a system, application, or network that is subject to exploitation or misuse”
3. “Weakness in an information system, system security procedures, internal controls, or imple-

mentation that could be exploited by a threat source”

Those familiar with the CERT Resiliency Management Model (RMM) may be accustomed to the
more general definition of vulnerability in the Vulnerability Analysis and Resolution (VAR) prac-
tice: “A vulnerability is the susceptibility of an asset and associated service to disruption” [5]. A
summary of the VAR process area of the CERT RMM can be found in Section 1.2.6.1.

While vulnerabilities can be found in many assets belonging to an organization—people, infor-
mation, technology, and facilities—in this document we primarily focus on vulnerabilities in soft-
ware or software-centric products and to a lesser degree services built on software-dependent
products

While precisely defining vulnerability can be difficult, for our purpose a vulnerability may be
thought of as an undesirable, exploitable, and likely unintended feature of software or hardware
components that allows an attacker to perform actions that wouldn’t otherwise be available to
them. The impact of such vulnerabilities can vary greatly, from being able to access someone’s
private data, to taking control of a computer, to causing physical damage and bodily injury.

1.2.2 Exploits, Malware, and Incidents

We also need to get a few quick technical terms out of the way so they don’t cloud the remaining
discussion. An exploit is software that uses a vulnerability to achieve some effect. Sometimes the
effect is as simple as demonstrating the existence of the vulnerability. Other times it plays a role
in enabling adversaries to attack systems. Malware is software used by adversaries to compromise
the security of a system or systems. But not all malware involves exploits. Finally, an incident is a

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

violation or an attempted violation of a security policy, and may involve malware, exploits, or
vulnerabilities (or none of these!)

1.2.3 Vulnerability Response (VR)

Vulnerability Response (VR) is the overall set of processes and practices that deal with the exist-
ence of vulnerabilities in systems. VR encompasses everything from reducing the introduction of
vulnerabilities as part of a Secure Development Lifecycle (SDL) through the remediation of de-
ployed vulnerabilities via patch deployment.

Vulnerability response in the design and development phases often takes the form of practices
such as threat modeling [6] [7], secure coding [8] [9] [10], and architecture risk analysis [11]
[12]. However, such practices seem unlikely to ever completely eliminate vulnerabilities from be-
ing introduced into released software and deployed systems. For those vulnerabilities that do es-
cape detection by these early lifecycle practices, it is necessary to plan for their eventual discovery
and disclosure.

The goals of vulnerability response include the following:

• Limit attacker advantage over defenders.
• Reduce the population of vulnerable product instances as quickly as possible.
• Reduce the impact of attacks against vulnerable systems.

1.2.4 Vulnerability Discovery

Vulnerability discovery can take many forms, from specifically targeted software testing to simple
use of a system by a security-aware individual who notices some feature that seems out of place.
In order for that discovery to be relevant to our discussion, it must result in a vulnerability report.
Most discussions about vulnerability disclosure are referring to the handling of reports of newly
discovered vulnerabilities in products for which no patch exists (for a more nuanced discussion
regarding why we’re eschewing the term zero-day vulnerability here, see [13]). We further distin-
guish vulnerability discovery from vulnerability scanning in Section 1.2.7.

1.2.5 Coordinated Vulnerability Disclosure

Coordinated Vulnerability Disclosure is the process of gathering information from vulnerability
finders, coordinating the sharing of that information between relevant stakeholders, and disclosing
the existence of software vulnerabilities and their mitigations to various stakeholders, including
the public. CVD is an important aspect of any successful VR process. CVD inputs are vulnerabil-
ity reports arising from vulnerability discovery practices. CVD outputs for product vulnerabilities
(software or hardware) usually include patches as well as vulnerability report documents or vul-
nerability database records, typically with some formal identifier (e.g., CVE [14], VU# [15], and
BID [16]). Many operational vulnerabilities such as router misconfigurations, website vulnerabili-
ties, or cloud service problems can be fixed in situ by the operator, but often do not result in a
public disclosure.

ISO/IEC 29147 [17] defines Vulnerability Disclosure as follows:

Vulnerability disclosure is a process through which vendors and vulnerability finders may
work cooperatively in finding solutions that reduce the risks associated with a vulnerability.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

It encompasses actions such as reporting, coordinating, and publishing information about a
vulnerability and its resolution.

The goals of vulnerability disclosure include the following: a) ensuring that identified vul-
nerabilities are addressed; b) minimizing the risk from vulnerabilities; c) providing users
with sufficient information to evaluate risks from vulnerabilities to their systems;

The stakeholders—in other words, the people who care about the existence of a vulnerability—
vary on a case by case basis, but typically include those below:

• the reporter or finder of the vulnerability (often an independent security researcher)
• the vendor (developer) of the component that contains the vulnerability (“originating ven-

dor”)
• vendors that utilize the component containing the vulnerability in their own products

(“downstream vendors”)
• coordinators, vulnerability databases, or other organizations that specialize in incident re-

sponse and vulnerability handling
• the general public / consumers who purchase and use products containing the vulnerable

component

Disclosure, in turn, is the process by which information about a vulnerability (ideally with advice
for mitigating or fixing it) is released to consumers of the product, and more generally, the public
at large.

There is no single “right” way to do this. Sometimes, vulnerability information is disclosed in a
blog post by the finder of the vulnerability, or emailed to a security mailing list. Sometimes the
vendor issues a security advisory to its customers or to the public. At the CERT/CC, we publish
Vulnerability Notes on our website, often in parallel with other parties (i.e., the finder of the vul-
nerability and/or the vendor of the vulnerable product).

Furthermore, there persists a lack of agreement within the security community on whether, and
under what conditions, vulnerability information should be disclosed to vendors, other stakehold-
ers, and the public. Different people sometimes hold strongly differing opinions about the disclo-
sure of software vulnerabilities. These differences tend to center on the timing of a vulnerability
report’s release, the type and degree of details included, and the audience to whom the report is
provided.

As a result, the character of information in a vulnerability report can vary greatly. Some reports
only warn of a general vulnerability in a specific product. Others are more detailed and provide
actual examples of how to attack the flaw (these examples are called “proof of concept code,” of-
ten shortened to “PoC”).

It is worth reiterating that disclosure is not a singular event even for a single vulnerability. For
more on the different phases of the process, see Section 3.

1.2.5.1 Who is Responsible Here?

You may be familiar with the term responsible disclosure [18] and wonder how it’s different from
CVD. The history of responsible disclosure makes for a long story best told over adult beverages

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

at a hotel bar during a security conference, so we won’t go into it here. Without belaboring the
topic, the sticking point comes down to the fact that what constitutes “responsible” behavior is a
matter of opinion that is always framed within the values of whoever is using the term. The ven-
dors cry, “Disclosing a vulnerability without an available patch is not responsible!” “Not fixing
this vulnerability quicker is not responsible!” the finders retort. Meanwhile, the deployer asks,
“Who’s responsible for fixing this?” while knowing the answer all too well.

Because of the inherent value judgement and lack of agreement on its definition, the CERT/CC,
along with numerous other organizations, advocates for the use of the term Coordinated Vulnera-
bility Disclosure (CVD) [19] [20] to reduce misunderstanding and promote cooperation.

1.2.6 Vulnerability Management (VM)

Vulnerability Management (VM) is the common term for tasks such as vulnerability scanning,
patch testing, and deployment. VM practices nearly always deal with the output of CVD practices,
not the inputs. VM practices focus on the positive action of identifying specific systems affected
by known (post-disclosure) vulnerabilities and reducing the risks they pose through the applica-
tion of mitigations or remediation such as patches or configuration changes. NIST Special Publi-
cation 800-40 provides a Guide to Enterprise Patch Management Technologies [21]. VM practices
also appear within the Vulnerability Analysis and Resolution operational process of the CERT
RMM [5].

1.2.6.1 Vulnerability Analysis and Resolution (VAR)

Vulnerability Analysis and Resolution (VAR) is an operational process described within the
CERT RMM that closely overlaps with the concept of Vulnerability Management. Although the
RMM is designed with a focus on operational resilience for organizations, there is sufficient over-
lap with our topic that it’s worth highlighting here. Within the RMM’s VAR process area, a num-
ber of goals and practices are identified:

• Prepare for Vulnerability Analysis and Resolution.
− Establish Scope – The assets and operational environments that must be examined for

vulnerabilities are identified.
− Establish a Vulnerability Analysis and Resolution Strategy.

• Establish and maintain a process for identifying and analyzing vulnerabilities.
− Identify Sources of Vulnerability Information.
− Discover Vulnerabilities.
− Analyze Vulnerabilities to determine whether they need to be reduced or eliminated.

• Manage Exposure to Vulnerabilities – Strategies are developed and implemented to manage
exposure to identified vulnerabilities.

• Identify Root Causes – The root causes of vulnerabilities are examined to improve vulnera-
bility analysis and resolution and reduce organizational exposure. Perform review of identi-
fied vulnerabilities to determine and address underlying causes.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1.2.7 Products and Instances

In talking about things that have vulnerabilities, we try to maintain a clear distinction between a
product being vulnerable, and an instance of a product being vulnerable. For example, Windows
10 (the product) might be vulnerable to a specific flaw, but that is a separate situation from a
server running Windows 10 (an instance) being vulnerable. Vulnerabilities affecting products may
not always affect every instance of a product; for example, a vulnerability may require a special
configuration or setup to be exploited, so any instance not in that configuration state would actu-
ally be unaffected by the vulnerability, despite the product at-large being vulnerable.

This distinction becomes important when one is talking about the practices associated with Vul-
nerability Management (VM)—namely vulnerability scanning—in contrast to CVD and vulnera-
bility discovery. VM entails the identification of instances of a product on which action must be
taken to remediate known vulnerabilities in the product. VM is concerned with the eradication of
the instances of known vulnerabilities in deployed systems, whereas CVD is concerned with the
repair of vulnerabilities at the product level.

1.2.8 Incident vs. Vulnerability Response

Sometimes the term “Incident Response” is used synonymously with Vulnerability Response.
These two concepts are related, but different; Vulnerability Response specifically indicates re-
sponding to reports of product vulnerabilities, usually via the CVD process, whereas Incident Re-
sponse is more general and can also include other security events such as network intrusions. We
will generally stick to the Vulnerability Response terminology since this work is specifically
about CVD.

1.3 Why Coordinate Vulnerability Disclosures?

Vulnerability disclosures fall between two extremes:

1. Disclose everything you know about a vulnerability to everyone as soon as you know it.
2. Never disclose anything you know about a vulnerability to anyone.

Prior research into vulnerability disclosure practices [22] has shown that neither approach is so-
cially optimal. Thus, we are given to hope that we can improve on these extremes by striking a
balance in between. But doing so requires several questions to be answered: how much infor-
mation should be released? To whom? And when? Do you wait for a patch to be deployed before
announcing the vulnerability’s existence? Do you wait for the patch to be available but not yet de-
ployed? Is it okay to acknowledge that you know of a vulnerability in a product without providing
any other details?

It’s also important to consider that not all factors are within control of the parties involved in the
disclosure process. Adversaries can discover vulnerabilities and use them to exploit vulnerable
systems regardless of your participation in a well-coordinated disclosure process. And yet many
vulnerabilities might never be exploited in attacks. So how should we approach the question of
potential harm and the questions surrounding risk and reward of vulnerability disclosure?

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The CERT/CC believes the Coordinated Vulnerability Disclosure (CVD) process provides a rea-
sonable balance of these competing interests. The public and especially users of vulnerable prod-
ucts deserve to be informed about issues with those products and how the vendor handles those
issues. At the same time, disclosing such information without review and mitigation only opens
the public up to exploitation. The ideal scenario occurs when everyone coordinates and cooperates
to protect the public. This coordination may also be turned into a public relations win for the ven-
dor by quickly addressing the issue, thereby avoiding bad press for being unprepared.

Some vendors express concern about the negative attention brought by having a long list of pub-
licly disclosed vulnerabilities in their products. In our opinion, the number of vulnerabilities found
in a vendor’s products is less valuable as an indicator of the vendor’s security stance than the con-
sistency of its response to vulnerabilities in a comprehensive and timely manner. In the end, the
goal of CVD is to help users make more informed decisions about actions they can take to secure
their systems.

The Forum of Incident Response and Security Teams (FIRST) [23], which consists of many pub-
lic and private organizations and companies involved in vulnerability and security incident han-
dling, has established a Vulnerability Coordination Special Interest Group to develop some com-
mon CVD best practices and guidelines [24]. While the existence of individual vulnerabilities
may be unexpected and surprising, these common practices should help lead to fewer surprises for
all stakeholders in the CVD process itself.

Governments and international organizations also recognize the need for coordinated vulnerability
disclosure practices. In 2015, the Department of Commerce’s National Telecommunications and
Information Administration initiated a Multistakeholder Process for Cybersecurity Vulnerabilities
[25] to

develop a broad, shared understanding of the overlapping interests between security re-
searchers and the vendors and owners of products discovered to be vulnerable, and to estab-
lish a consensus about voluntary principles to promote better collaboration. The question of
how vulnerabilities can and should be disclosed will be a critical part of the discussion, as
will how vendors receive and respond to this information. However, disclosure is only one
aspect of successful collaboration.

1.4 Previewing the Remainder of this Document

We explore a number of principles of Coordinated Vulnerability Disclosure in Section 2. Section
3 describes the various roles involved in CVD. Common phases of the CVD process are covered
in Section 4. The CVD process can vary depending on multiple factors, which we discuss in Sec-
tion 5. But things do not always go smoothly, so Section 6 offers advice for troubleshooting the
CVD process. Section 7 highlights operational considerations surrounding implementation of a
CVD capability. In Section 8, we discuss a few open issues in the CVD space. Our conclusion can
be found in Section 9, followed by a bibliography and multiple appendices. The appendices con-
tain additional information about CVD issues specific to the Internet of Things, sample forms
used in CVD processes, as well as references to disclosure policies, practices, and related infor-
mation.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2 Principles of Coordinated Vulnerability Disclosure

Change your opinions, keep to your principles; change your leaves, keep intact your roots.

– Victor Hugo

Over the years, the CERT/CC has identified a number of principles that guide our efforts in coor-
dinating vulnerability disclosures and which seem to be present in many successful CVD pro-
grams. These principles include the following:

• Reduce Harm
• Presume Benevolence
• Avoid Surprise
• Incentivize Desired Behavior
• Ethical Considerations
• Process Improvement
• CVD as a Wicked Problem

We cover each of these in more detail below.

2.1 Reduce Harm

Harm reduction is a term borrowed from the public health community. In that context, it is used to
describe efforts intended to reduce the harm caused by drug use and unsafe health practices, rather
than on the eradication of the problem. For example, one of the tenets of harm reduction is that
there will never be a drug-free society, and so preparations must be made to reduce the harm of
drugs that currently exist since we will never be completely free of them [26] [27].

This concept applies to software vulnerabilities as well: that it may be possible to reduce the po-
tential for harm even if vulnerabilities cannot be fully eliminated. At its core, harm reduction with
respect to vulnerable software is about balancing the ability for system defenders to take action
while avoiding an increase in attacker advantage.

Experience has shown that nearly all software-centric products contain vulnerabilities, and this
will likely remain true, especially as code complexity continues to increase. In fact, the potential
for vulnerabilities will likely never go away since a previously secure system can become vulner-
able when deployed into a new context, or simply due to environmental changes or the develop-
ment of novel attack techniques. Systems tend to outlive their threat models. The Flatiron Build-
ing in New York City stands as an example of this phenomenon in the physical world. Built prior
to the Wright brothers’ flight at Kitty Hawk, NC, today it is vulnerable to attack using an airliner
as a weapon. It’s difficult to argue that the designers should have “built security in” for attacks
that would have been considered science fiction at the time of deployment [28].

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Since vulnerabilities are likely to persist despite our best efforts, CVD works best when it focuses
on reducing the harm vulnerabilities can cause. Some approaches to reducing the harm caused by
vulnerable software and systems include the following:

• Publishing vulnerability information. Providing high-quality, timely, targeted, automated
dissemination of vulnerability information enables defenders to make informed decisions
and take action quickly.

• Encouraging the adoption and widespread use of exploit mitigation techniques on all plat-
forms.

• Reducing days of risk. Selecting reasonable disclosure deadlines is one way of achieving the
goal of minimizing the time between a vulnerability’s discovery and the remediation of its
last deployed instance [22]. Another way is to shorten the time between vulnerability disclo-
sure and patch deployment by automating patch distribution using secure update mechanisms
that make use of cryptographically signed updates or other technologies.

• Releasing high-quality patches. Increasing defenders’ trust that patches won’t break things or
have undesirable side effects reduces lag in patch deployment by reducing the defenders’
testing burden.

• When possible, automated patch deployment can improve patch deployment rates too.

2.2 Presume Benevolence

Benevolence refers to the morally valuable character trait or virtue of being inclined to act to ben-
efit others. In terms of the CVD process, we have found that it is usually best to assume that any
individual who has taken the time and effort to reach out to a vendor or a coordinator to report an
issue is likely benevolent and sincerely wishes to reduce the risk posed by the vulnerability. While
each reporter may have secondary motives (such as those listed in Table 1 below), and may even
be difficult to work with at times, allowing negative associations about a CVD participants’ mo-
tives to accumulate can color your language and discussions with them.

This isn’t to say you should maintain your belief that researcher is acting in good faith when pre-
sented with evidence to the contrary. Rather, one should keep in mind that participants are work-
ing toward a common goal: reducing the harm caused by deployed insecure systems.

I Am the Cavalry describes Finder/Reporter motivations thus [29]:

Table 1: I Am the Cavalry’s Finder / Reporter Motivations

Finder / Reporter Motivation Description

Protect make the world a safer place. These researchers are drawn to
problems where they feel they can make a difference.

Puzzle tinker out of curiosity. This type of researcher is typically a
hobbyist and is driven to understand how things work.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The Awareness and Adoption Group within the NTIA Multistakeholder Process for Cybersecurity
Vulnerabilities [25] surveyed security researchers and vendors, finding that [30]

• 92% of researchers participate in some form of CVD.
• 70% of researchers expected regular communication from the vendor about their report.

Frustrated expectations were often cited as the reason for abandoning the CVD process
• 60% of researchers cited threat of legal action as a reason they might not work with a vendor

to disclose
• 15% of researchers expected a bounty in return for their disclosure

2.3 Avoid Surprise

As with most situations in which multiple parties are engaged in a potentially stressful and con-
tentious negotiation, surprise tends to increase the risk of a negative outcome. The importance of
clearly communicating expectations across all parties involved in a CVD process cannot be over-
emphasized.

If we expect cooperation between all parties and stakeholders, we should do our best to match
their expectations of being “in the loop” and minimize their surprise. Publicly disclosing a vulner-
ability without coordinating first can result in panic and an aversion to future cooperation from
vendors and finders alike. CVD promotes continued cooperation and increases the likelihood that
future vulnerabilities will also be addressed and remedied.

2.4 Incentivize Desired Behavior

A degree of community outreach is an important part of any CVD process. Not everyone shares
the same values, concerns, perspectives, or even ethical foundations, so it’s not reasonable to ex-
pect everyone to play by your rules. Keeping that in mind, we’ve found that it’s usually better to
reward good behavior than try to punish bad behavior. Such incentives are important as they in-
crease the likelihood of continued cooperation between CVD participants.

Incentives can take many forms:

• Recognition – Public recognition is often used as a reward for “playing by the rules” in
CVD.

• Gifts – Small gifts (or “swag”) such as T-shirts, stickers, and so forth give researchers a
good feeling about the organization.

Prestige seek pride and notability. These researchers often want to be
the best, or very well known for their work.

Profit to earn money. These researchers trade on their skills as a
primary or secondary income.

Politics ideological and principled. These researchers, whether patri-
ots or protestors, strongly support or oppose causes.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• Money – Bug bounties can turn CVD into piece work.
• Employment – We have observed cases where organizations choose to hire the researchers

who report vulnerabilities to them, either on a temporary (contract) or full-time basis. This is
of course neither required nor expected, but having a reputation of doing so can be an effec-
tive way for a vendor to encourage positive interactions.

2.5 Ethical Considerations

At present, there is no generally accepted set of ethical guidelines for CVD. In the security re-
sponse arena, work toward defining ethical guidelines is ongoing. The Forum of Incident Re-
sponse and Security Teams (FIRST) has established a special interest group to develop a code of
ethics for its member teams and liaisons [31]. However, that does not imply that there is a com-
plete absence of relevant guidance in the matter. Here we highlight some ethics advice from re-
lated sources.

2.5.1 Ethics in Related Professional Societies

Various computing-related professional societies have established their own codes of ethics. Each
of these has application to CVD.

The Association for Computing Machinery (ACM) Code of Ethics and Professional Conduct [32]
includes the following general imperatives:

• Contribute to society and human well-being.
• Avoid harm to others.
• Be honest and trustworthy.
• Be fair and take action not to discriminate.
• Honor property rights including copyrights and patent.
• Give proper credit for intellectual property.
• Respect the privacy of others.
• Honor confidentiality.

The Usenix’ System Administrators’ Code of Ethics [33] includes an ethical responsibility “to
make decisions consistent with the safety, privacy, and well-being of my community and the pub-
lic, and to disclose promptly factors that might pose unexamined risks or dangers.”

2.5.2 Journalism Ethics

In many ways, disclosing a vulnerability can be thought of as a form of journalistic reporting, in
that

The purpose of journalism is … to provide citizens with the information they need to make
the best possible decisions about their lives, their communities, their societies, and their gov-
ernments [34].

By analogy, vulnerability disclosure provides individuals and organizations with the information
they need to make the best possible decisions about their products, their computing systems and
networks, and the security of their information.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

We find the four major principles offered by The Society of Professional Journalists Code of Eth-
ics to be relevant to CVD as well [35]:

• Seek truth and report it – Ethical journalism should be accurate and fair. Journalists should
be honest and courageous in gathering, reporting and interpreting information.

• Minimize harm – Ethical journalism treats sources, subjects, colleagues and members of the
public as human beings deserving of respect.

• Act independently – The highest and primary obligation of ethical journalism is to serve the
public.

• Be accountable and transparent – Ethical journalism means taking responsibility for one’s
work and explaining one’s decisions to the public.

2.6 Process Improvement

In reviewing their experience in the CVD process, participants should capture ideas that worked
well and note failures. This feedback can be used to improve both the Software Development
Lifecycle and the CVD process itself.

The CVD process can create a pipeline for regular patching cycles and may reveal blocking issues
that prevent a more efficient software patch deployment mechanism. A successful program pro-
vides the vendor with a degree of crowdsourcing for security research and testing of its products.
However, CVD should be considered complementary to a vendor’s internal research and testing
as part of the Software Development Lifecycle, not as a wholesale replacement for internally
driven security testing.

2.6.1 CVD and the Security Feedback Loop

A successful CVD program feeds vulnerability information back into the vendor’s Software De-
velopment Lifecycle. This information can result in more secure development processes, helping
to prevent the introduction of vulnerabilities in the first place.

Yet the reality of today’s software is that much of its legacy code was not originally produced
within a secure development process. Andy Ozment and Stuart Schechter studied the impact of
legacy code on the security of modern software and how large code changes might introduce vul-
nerabilities [36]. The positive news is that foundational vulnerabilities—ones that existed in the
very first release and carried through the most recent version of the software—decay over time.
We can find them, fix them, and make the code base stronger overall. However, the bad news is
that as the low-hanging fruit of foundational vulnerabilities are fixed, the remaining foundational
vulnerabilities tend to be more subtle or complex, making them increasingly difficult to discover.

Furthermore, ongoing development and code changes can introduce new vulnerabilities, making it
unlikely for the security process to ever be “finished.” Even with modern architecture develop-
ment and secure coding practices, software bugs (and in particular security vulnerabilities) remain
a likely result as new features are added or code is refactored. This can happen for many reasons,
not all of them technical. A recent article highlighted the difficulty of getting teams of people to
work together, resulting in poor software architecture [37]. While the authors were primarily con-
cerned with maintainability and performance, bugs (and particularly security vulnerability bugs)
are an important side effect of inadequate architecture and teamwork process.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Another possibility is that, even with good internal processes and teamwork, no software model or
specification can comprehensively account for the variety of environments the software may oper-
ate in [38]. If we cannot predict the environment, we cannot predict all the ways that things may
go wrong. In fact, research has shown that it appears impossible to model or predict the number of
vulnerabilities that may be found through tools like fuzzing—and, by extension, the number of
vulnerabilities that exist in a product [39] [40]. The best advice seems to be to assume that vulner-
abilities will be found indefinitely into the future and work to ensure that any remaining vulnera-
bilities cause minimal harm to users and systems.

A successful CVD process helps encourage the search for and reporting of vulnerabilities while
minimizing harm to users. Developers supporting a successful CVD process can expect to see the
overall security of their code improve over time as vulnerabilities are found and removed.

2.6.2 Improving the CVD Process Itself

Feeding lessons learned back into the development process, CVD can

• reduce creation of new vulnerabilities
• increase pre-release testing to find vulnerabilities

Participation in CVD may allow discussions between your developers and security researchers on
new tools or methods for vulnerability discovery such as static analysis or fuzzing. These tools
and methods can then be evaluated for inclusion in ongoing development processes if they suc-
ceed in finding bugs and vulnerabilities in your product. Essentially, CVD can facilitate field test-
ing of new analysis methods for finding bugs.

2.7 CVD as a Wicked Problem

Horst W.J. Rittel and Melvin M. Webber, in their 1973 article “Dilemmas in a General Theory of
Planning,” describe the following characteristics of wicked problems [41]:

1. “There is no definitive formulation of a wicked problem” – solving the problem is analo-
gous to understanding it.

2. “Wicked problems have no stopping rule” – the problem has no intrinsic criteria to indi-
cate that a solution is sufficient; solutions depend rather on the planner deciding to stop plan-
ning.

3. “Solutions to wicked problems are not true-or-false, but good-or-bad” – the judgement
of a solution’s fitness by parties involved will be filtered through their values and their pre-
disposed ideology. These judgements are usually “expressed as ‘good’ or ‘bad’ or, more
likely, as ‘better or worse’ or ‘satisfying’ or ‘good enough.’”

4. “There is no immediate and no ultimate test of a solution to a wicked problem” – solu-
tions can have far-reaching and not always clear effects in both time and scope. Likewise,
the desirability of the outcomes may not become clear until much later.

5. “Every solution to a wicked problem is a ‘one-shot operation’; because there is no op-
portunity to learn by trial-and-error, every attempt counts significantly” – actions taken
in response to the problem affect the options available to future solutions.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6. “Wicked problems do not have an enumerable (or an exhaustively describable) set of
potential solutions, nor is there a well-described set of permissible operations that may
be incorporated into the plan” – it is not possible to demonstrate that all possible solutions
have been considered or even identified.

7. “Every wicked problem is essentially unique” – The meaning of essentially unique is
given as “despite long lists of similarities between a current problem and a previous one,
there always might be an additional distinguishing property that is of overriding im-
portance.”

8. “Every wicked problem can be considered to be a symptom of another problem” –
every identified cause leads to a “higher level” problem of which the current problem is a
symptom. As a result, incremental approaches or marginal improvements may have little or
no impact on the problem.

9. “The existence of a discrepancy representing a wicked problem can be explained in nu-
merous ways. The choice of explanation determines the nature of the problem’s resolu-
tion” – The way a problem is described influences the solutions proposed.

10. “The planner has no right to be wrong” – The goal of a solution is not to find an ultimate
truth about the world, rather it is to improve conditions for those who inhabit it.

We assert that vulnerability disclosure can be thought of as a wicked problem, offering this docu-
ment as evidence to that effect.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3 Roles in CVD

What people say, what people do, and what they say they do are entirely different things.

– Margaret Mead

Certain roles are critical to the Coordinated Vulnerability Disclosure process, as described below:

• Finder (Discoverer) – the individual or organization that identifies the vulnerability
• Reporter – the individual or organization that notifies the vendor of the vulnerability
• Vendor – the individual or organization that created or maintains the product that is vulnera-

ble
• Deployer – the individual or organization that must deploy a patch or take other remediation

action
• Coordinator – an individual or organization that facilitates the coordinated response process
Although a more detailed description of the CVD process is provided in Section 4, a simple
sketch of the relationships between these roles is shown in Figure 1.

Figure 1: CVD Role Relationships

It is possible and often the case that individuals and organizations play multiple roles. For exam-
ple, a cloud service provider might act as both vendor and deployer, while a researcher might act
as both finder and reporter. A vendor may also be both a deployer and a coordinator. In fact, the
CERT/CC has played all five roles over time, although not usually simultaneously.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.1 Finder

ISO/IEC 29147 [17] defines a finder as an “individual or organization that identifies a potential
vulnerability in a product or online service,” noting that “finders can be researchers, security com-
panies, users, governments, or coordinators.” In the interest of consistency, we will use this defi-
nition of finder, although in other documentation we’ve used the term discoverer for this same
role. We do, however, distinguish between the role of finder and the role of reporter, as seen in
this section and the next.

Vulnerabilities can be found by just about anyone. All it takes is for someone to notice an unex-
pected or surprising behavior of a system. Although it is common for independent security re-
searchers to hunt vulnerabilities as either a hobby or profession, finders need not self-identify as
security researchers or hackers. Vulnerabilities have been found by people of many backgrounds:

• students and professional academics studying novel ways to exploit systems or protocols
• open source developers who notice that a software bug has security implications
• system administrators who recognize a vulnerability during the course of troubleshooting a

system error
• professional security analysts who observe a previously unknown product vulnerability

while testing an organization’s infrastructure during a penetration test engagement
• people using software or web services who mistyped some input or simply clicked on the

wrong thing
• children who like to press buttons. Kristoffer Von Hassel, a five-year-old from San Diego

discovered a vulnerability in Microsoft’s Xbox Live service just by holding down the space
bar and was able to log in to his father’s account without the password [42].

There are also organizations that look for vulnerabilities. Some of them work under contract to
vendors directly. Some work for the vendors’ customers who deploy the software. And some have
independent motivation to find vulnerabilities, perhaps to demonstrate their competence in finding
vulnerabilities in the interest of their security consulting practice’s business development.

Furthermore, vendors may choose to look for vulnerabilities in their own products—a practice
that we strongly encourage. This can be done via (a) in-house expertise and testing, (b) contracted
security testing, or (c) solicited on a per-vulnerability basis using a bug bounty program. Many
vendors integrate testing for vulnerabilities into their development process. Microsoft, for exam-
ple, includes static, dynamic, and fuzz testing for vulnerabilities in its phases of the Security De-
velopment Lifecycle [43]. The BSIMM model suggests that many vendors in various industries
already employ techniques in architecture analysis, code review, and security testing to find vul-
nerabilities as part of their development cycle [44].

Regardless of who finds a vulnerability, there are a few common events that follow the discovery:

1. The finder composes a vulnerability report, as discussed in Section 4.2.4.
2. The finder (or reporter, if these are distinct individuals) provides that report to someone. Of-

ten the vulnerability report would be provided to the vendor, but that’s not always the case.
Sometimes the report might be sent to a coordinator. If the vulnerability is discovered inter-
nally to a vendor, then the report may simply be forwarded to the responsible team within the

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

organization—for example, filed as a security-related bug report. We cover the coordinator
role in Section 3.5. A discussion of the reporting process can be found in Section 4.2.

3. (Optional) Finders, reporters, vendors, or coordinators might prepare a document to publish.
The finder often wants to draw attention to his or her discovery and subsequent analysis by
publishing a document, blog post, or conference presentation, to share the findings with a
larger audience. Vendors typically want to publish a document as well to inform their users
that action has been taken to resolve the problem, and to prompt their users to take any re-
quired remediation actions. Publishing of vulnerability information is covered in Section 4.5.

It is of course possible for a finder to find a vulnerability and tell no one. However, in that case
there is no disclosure involved so we do not address that scenario further in this document.

3.2 Reporter

The defining characteristic of vulnerability reporters is that they originate the message that in-
forms a vendor or coordinator of a vulnerability. In most cases, the reporter is also the finder of
the vulnerability. However, this is not always the case. For example, the finder might be an em-
ployee at an organization that also has in-house vulnerability coordinators who act as the commu-
nications liaison with the affected vendor(s).

Alternatively, it could be that someone analyzing a piece of malware realized that it exploited a
previously undisclosed vulnerability. In both cases, the party communicating the vulnerability in-
formation to the vendor is not the original finder. That said, whether or not the reporter is the orig-
inal finder is often not as relevant as whether the newly provided information is sufficient to de-
termine the existence and impact of the problem reported.

3.3 Vendor

The vendor is the party responsible for updating the product containing the vulnerability. Most of-
ten a vendor is a company or other organization, but an individual can also be a vendor. For ex-
ample, a student who developed an app and placed it in a mobile app store for free download
meets this definition of vendor, as does a large multinational company with thousands of develop-
ers across the globe. Many open source libraries are maintained by a single person or a small in-
dependent team; we still refer to these individuals and groups as vendors.

As software-centric systems find their way into various industries, more and more vendors of tra-
ditional products find themselves becoming software vendors. Moving beyond traditional soft-
ware companies, recent years have seen the rise in networked products and services from a variety
of industries, including those below:

• consumer products, such as home automation and the internet of things (IoT)
• internet service providers (ISPs) and the makers of devices that access ISP services: internet

modems, routers, access points, and the like
• mobile phone manufacturers and service providers
• industrial control systems, building automation, HVAC manufacturers
• infrastructure suppliers and increasingly “smart” utility services including water and sewer

services and the energy industry

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• transportation services, including the airline and automotive industries
• medical devices and health-related device manufacturers

Furthermore, since many modern products are in fact composed of software and hardware compo-
nents from multiple vendors, the CVD process increasingly involves multiple tiers of vendors, as
we discuss in Section 5.4.2. For example, the CVD process for a vulnerability in a software li-
brary component may need to include the originating author of the vulnerable component as well
as all the downstream vendors who incorporated that component into their products. Each of these
vendors in turn will need to update their products in order for the fix to be deployed to all vulnera-
ble systems.

The NTIA Awareness and Adoption Working Group survey (previously mentioned in Section
2.2) found the following [30]:

• 60-80% of the more mature vendors followed CVD practices
• 76% of those mature vendors developed their vulnerability handling procedures in-house.
• Vendors’ perceived need for a vulnerability disclosure policy was driven by a sense of cor-

porate responsibility or customer demand.
• Only a third of responding companies considered and/or required suppliers to have their own

vulnerability handling procedures.

3.3.1 Vendor as the Introducer of Vulnerabilities

The vendor often plays an important but less discussed role as well, as the creator of the software
or system that introduces the vulnerability. While good practices like code reviews, continuous
testing and integration, well-trained developers, mentoring, architectural choices, and so forth can
reduce the rate of introduction of new vulnerabilities, these practices thus far have not eliminated
them completely. Thus, a well-established CVD capability is also essential to the development
process.

3.3.2 Vendor Vulnerability Response Process

In order to effectively mitigate the impact of vulnerabilities in their products and services, vendors
must be able to perform the following specific tasks:

• receive reports
• triage, analyze, and test claims made in reports received
• fix bugs
• distribute patch(es)
• (recommended) publish a document
• (recommended) improve internal development process

The ISO/IEC standards 29147 Vulnerability disclosure and 30111 Vulnerability handling pro-
cesses offer specific models for external- and internal-facing vendor vulnerability response prac-
tices. Readers are encouraged to review and apply those standards to their operational vulnerabil-
ity response practice. ISO/IEC 29147 describes an outward-facing CVD process [17]. ISO/IEC
30111 addresses the internal processes associated with vendor vulnerability response [45].

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.3.2.1 Evaluating the Vendor Security Response Process

It is a mistake to evaluate a product favorably based solely on its having a low number of publicly
known vulnerabilities. In fact, the known vulnerability count in a product is usually not indicative
of the quality of a product. There are many reasons a product may have few public vulnerability
reports: these include (1) the vendor might lack proper CVD capabilities or have a history of
threatening legal action against finders and reporters if they publish vulnerability reports, or
(2) the product’s prevalence or niche may be too small to warrant finder attention.

Instead, we have found that a vendor’s CVD capability and vulnerability response process ma-
turity is often a more important indicator of its commitment to quality than its vulnerability counts
alone. Development practices, as human processes, inevitably fail. Vendors that acknowledge this
fact and create a good CVD practice are well positioned to compensate for this inevitability.

3.3.3 Vendor Sub-Roles

There are various sub-roles one might find within a vendor organization. In small organizations,
an individual might play all the sub-roles at once. Larger organizations often have teams that cor-
respond to the sub-roles identified here. Each of these sub-roles has a part to play in the vendor’s
vulnerability response practice.

3.3.3.1 PSIRT

A vendor might choose to establish a Product Security Incident Response Team (PSIRT). This is
similar to a Computer Security Incident Response Team (CSIRT), but is engaged for product se-
curity “incidents” (e.g., vulnerability reports and reports of exploitation of the company’s prod-
ucts). The PSIRT acts as an interface between the public and the developers. Examples include
the Microsoft Security Response Center (MSRC) [46] and Cisco PSIRT [47] . Many vendor
PSIRTs are active in the Forum of Incident Response and Security Teams (FIRST) [48].

3.3.3.2 Developers

For vendors of sufficient size to have a dedicated PSIRT, the vulnerability response and develop-
ment processes are likely found in different parts of the organization. The development role usu-
ally has the responsibility to

• identify what to fix and how to fix it
• create the patch
• integrate the patch into releasable products

The PSIRT should be in close contact with the developers in order to coordinated fixes.

3.3.3.3 Patch Originator vs. Downstream Vendor

Although a single vendor is usually the originator of a patch for a given vulnerability, this is not
always the case. Some vendors will have products affected by a vulnerability while they are not
the originator of the initial fix. Ideally the CVD process should cover not just the patch originator
but also the downstream vendors. The complexity of the software supply chain can make this dif-
ficult to coordinate as we discuss in Section 5.4.2.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.3.3.4 Process Improvement

Having a mechanism to receive and track the disposition of vulnerability reports is an important
first step in establishing a vendor’s vulnerability response capability. But it should not stop there;
vendors should strive for continuous improvement of their software development process.

Improving the development process can reduce the number of vulnerabilities in future products.
Vendors can establish a feedback loop by performing a root cause analysis of vulnerabilities re-
ported. Lessons learned can then inform modifications to the development process. Some of the
ways vulnerability response can feed back into the development lifecycle include the following:

• Root cause analysis – to identify common causes and learn how to reduce future introduc-
tion of similar vulnerabilities. Questions to ask include the following: How did this vulnera-
bility make it into the released product without being detected? How could it have been
found and fixed earlier, before release? How might the vulnerability have been avoided en-
tirely?

• Automated testing – to find vulnerabilities sooner, ideally before release. Continuous inte-
gration (CI) systems and DevOps practices provide excellent opportunities to incorporate au-
tomated security testing. For example, a CI server could initiate a fuzzing campaign on each
nightly build of a product. An automated release process might require that code pass all
static analysis tests with no significant findings before proceeding.

• Threat modeling – to identify high-risk portions of a product earlier in the development
process so potential vulnerabilities can be found and addressed at design time, before they
are even implemented.

3.4 Deployer

The deployer role refers to the individual or organization responsible for the fielded systems that
use or otherwise depend on products with vulnerabilities. Deployers include the following:

• network and cloud infrastructure providers
• <anything>-as-a-service providers
• outsourced IT operations
• in-house IT operations
• individual users

Deployers typically must take some action in response to a vulnerability in a product they’ve de-
ployed. Most often this means deploying a patch, but it can also involve the application of secu-
rity controls, such as reconfiguring defensive systems, adding monitoring or detection rules, or
applying mitigations.

Automation of the deployment process increases the efficiency of the deployer’s response at the
same time it decreases the duration of the risk posed by vulnerable systems.

Although the deployer role is primarily concerned with Vulnerability Management practices that
sit downstream of CVD, it’s worth spending a few moments to understand how it fits in with
CVD.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.4.1 Deployer Vulnerability Response Process

A deployer’s vulnerability response process usually involves the following sequence of stages:

• Become aware of vulnerability, mitigation, and/or fix.
• Prioritize the mitigation or fix into existing workload (triage).
• Test the mitigation or fix.

− Confirm that the fix addresses the problem.
− Avoid undesirable side effects.

• Identify affected systems and plan the deployment:
− staged or all-at-once
− automated or manual
− scheduled update window or out-of-band

• Deploy the mitigation or fix to affected systems.

We cover each of these in more detail below.

3.4.1.1 Become Aware

In order to take action, a deployer must know about the vulnerability and have sufficient infor-
mation to act on. Most often this information originates from the product vendor. However, since
not all vulnerability reports are coordinated with the vendor for disclosure, vulnerability infor-
mation can arrive from other sources as well.

Deployers should be on the lookout for and pay attention to

• vendor security notices
• vendor customer support notices (not all vendors provide separate security notices, nor are

all vulnerabilities always explicitly called out in update notes)
• vulnerability and threat intelligence services
• security discussions online including social media
• mass media coverage of vulnerabilities

3.4.1.2 Prioritize Response

Deployers have many responsibilities beyond deploying patches. As a result, they need to priori-
tize their work and integrate patch deployment into their normal operations cycle. That might
mean testing, scheduling out-of-band fixes, or planning for scheduled maintenance windows. Just
as vendors need to triage reports in order to prioritize patch development appropriately, deployers
must decide which patches and mitigations to deploy and when to deploy them. The deployer’s
workload often makes it difficult to patch all the things as quickly as they would like.

3.4.1.3 Test the Solution

Testing prior to deployment is important if either of the following conditions is true:

• The system’s availability and performance are critical.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• Reverting a patch deployment gone bad is difficult.

In environments with efficient automated deployment and rollback capabilities, it may not be as
necessary to test as heavily. But that’s often an ideal scenario that few deployers find themselves
in. Staged deployments or rollouts can be a significant help here—where some portion of the af-
fected systems are updated to confirm the fix prior to wider rollout—allowing deployers to bal-
ance patch deployment with the risk of negative side effects.

3.4.1.4 Plan the Deployment

Deployers have many options when it comes to planning to deploy a patch or mitigation. Highly
automated environments can dramatically shorten the time required to complete these stages, but
the functions described here will usually still occur regardless of the deployer’s automated patch-
ing capability.

Planning for a patch deployment requires two major steps:

1. Identify and enumerate system instances affected by the vulnerability. Vulnerability manage-
ment tools can be used to scan for affected systems and prioritize patch deployment. Infor-
mation about affected hosts helps to define the scale of the patching effort required.

2. Set the deployment schedule. If there are relatively few systems under management and vul-
nerabilities are fairly rare, a first-in-first-out process might suffice. Larger enterprises often
have scheduled maintenance windows during which they can deploy most patches. Alterna-
tively, an organization might choose to push out a patch outside of a scheduled maintenance
window, especially in cases where a vulnerability is being actively exploited or significant
harm is expected should the vulnerability remain unpatched until the next maintenance win-
dow. Essentially the question boils down to deploy now or defer to later?

3.4.1.5 Execute the Plan

Obviously, it is important to actually carry out the deployment of the mitigation or fix. Automated
patch deployment tools can make this process quite efficient. Regardless of the degree of automa-
tion of patch deployment, recurring or continuous monitoring for vulnerabilities can help measure
the success of the deployment effort.

3.5 Coordinator

Complicated or complex CVD cases can often benefit from the help of a coordinator. A coordina-
tor acts as a relay or information broker between other stakeholders. Several types of coordinators
with slightly different roles and domains exist. We list a few here.

3.5.1 Computer Security Incident Response Team (CSIRT)

A Computer Security Incident Response Team (CSIRT) is a service organization that is responsi-
ble for receiving, reviewing, and responding to computer security incident reports and activity.
Their services are usually performed for a defined constituency that could be a parent entity such
as a corporate, governmental, or educational organization; a region or country; a research net-
work; or a paid client. A CSIRT can be a formalized team or an ad-hoc team. A formalized team
performs incident response work as its major job function. An ad-hoc team is called together dur-
ing an ongoing computer security incident or to respond to an incident when the need arises [49].

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.5.2 CSIRT with National Responsibility

CSIRTs with National Responsibility, also known as National CSIRTs, are designated by a coun-
try or economy to have specific responsibilities in cyber protection for the country or economy. A
National CSIRT can be inside or outside of government, but must be specifically recognized by
the government as having responsibility in the country or economy [50]. In addition to function-
ing as a clearing house for incident response across government departments and agencies,
CSIRTs with National Responsibility often have some degree of responsibility or oversight for
coordinating vulnerability response across their nation’s critical infrastructure. US-CERT, part of
the Department of Homeland Security, has been designated as the national CSIRT for the United
States. We maintain a list of National CSIRTS on the CERT website [51].

3.5.3 Product Security Incident Response Team (PSIRT)

Over time, Product Security Incident Response Teams (PSIRTs) have emerged as a specialized
form of CSIRT, allowing vendors to focus their response to product security issues. Although not
all vendors have dedicated PSIRTs, vulnerability response is sufficiently different from security
incident response that larger vendor organizations can usually justify having a distinct function to
deal with it. PSIRTs usually provide an interface to the outside world to receive vulnerability re-
ports as well as serving as a central coordinator between internal departments for the organiza-
tion’s vulnerability response for its products. When reporting a vulnerability to a vendor, the re-
porter will usually be communicating with the vendor’s PSIRT. For example, Cisco, Oracle, Intel,
Microsoft, Apple, Adobe, and others have established internal PSIRTs. Many PSIRTs participate
in the Forum for Incident Response and Security Teams [48].

3.5.4 Security Research Organizations

Organizations that perform security research on other vendors’ products in the course of their own
business sometimes establish their own coordination capability in order to handle the disclosure
process for the vulnerabilities they find. A wide variety of organizations perform this kind of se-
curity research, whether for profit or for non-commercial reasons. Some examples include man-
aged security service providers, government agencies, and academic research teams. Some of
these organizations are vendors of products or services themselves, and combine their PSIRT’s
vulnerability response capability with their externally facing coordination capability.

Furthermore, organizations that provide vulnerability management and scanning tools and ser-
vices are often well-positioned to act as a disclosure coordinator for the vulnerabilities their prod-
ucts detect. This applies especially when those vulnerabilities have not already been disclosed to
either the vendor or the public. Alternatively, organizations such as these may choose to partner
with another coordinating organization in order to promote transparency and reduce the percep-
tion of bias in their vulnerability disclosure process.

3.5.5 Bug Bounties and Commercial Brokers

In recent years, a new class of coordinator has emerged in the form of commercial bug bounty
program providers. Many individual vendors have established programs to compensate security
researchers for their efforts in discovering vulnerabilities in the vendor’s products. Creation of a
bug bounty program has been noted as an indicator of maturity in vendors’ vulnerability response
efforts. In some cases, vendor bug bounty programs are enabled by other companies that provide

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

tools and services to facilitate vulnerability coordination. Companies such as BugCrowd [52],
HackerOne [53], Synack [54], and Cobalt [55] offer turnkey solutions for vendors who want to
bootstrap their own vulnerability response program.

While bug bounty programs help address the vulnerability coordination needs of individual ven-
dors, there still are vulnerabilities that require larger scale coordination. In particular, multivendor
coordination remains a challenge for many organizations. As individual vendors have become
more mature in their handling of vulnerabilities in their products, the role of multivendor coordi-
nation has increased in importance for more traditional vulnerability coordinators such as the
CERT/CC [56], NCSC-NL [57], NCSC-FI [58], and JPCERT/CC [59].

3.5.6 Information Sharing and Analysis Organizations (ISAOs) and Centers
(ISACs)

Information Sharing and Analysis Organizations (ISAOs) and Centers (ISACs) are non-govern-
ment entities that serve various roles in gathering, analyzing, and disseminating critical infrastruc-
ture cybersecurity information across private sector organizations of various sizes and capabilities
[60] [61]. These organizations have only begun to emerge in earnest within the past few years, but
they are already actively involved in the coordination and deployment of vulnerability mitiga-
tions. Furthermore, it seems likely that some number of critical infrastructure sectors will need to
become involved further in the coordination of the vulnerability discovery, disclosure, and reme-
diation processes.

3.5.7 Reasons to Engage a Coordinator

There are a number of reasons that a finder, reporter, or vendor may wish to engage a third-party
coordinator to assist with the CVD process.

3.5.7.1 Reporter Inexperience

Novice reporters sometimes request assistance from coordinators to increase the chances of a suc-
cessful resolution to the vulnerability they have found. Working with a coordinator for the first
few cases can help develop a reporter’s knowledge of the CVD process. From the coordinator’s
perspective, working with novice reporters serves to transfer knowledge of CVD to the security
research community, thereby improving vulnerability response overall. We have found that nov-
ice reporters usually learn quickly and are willing to do most of the coordination effort them-
selves, but just need occasional advice on how the process should work.

3.5.7.2 Reporter Capacity

Seeing a CVD case through to resolution can at times be a protracted process. Not all reporters
have the time or resources to follow up on vulnerabilities they’ve reported. In such situations, a
coordinator can help by offloading some of the effort. However, coordinators are often limited in
their capacity as well, and must accordingly prioritize the cases they choose to take on. As a re-
sult, coordinators and reporters alike should take care to set clear expectations with each other as
to what roles they expect to play in any given coordination case.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.5.7.3 Multiple Vendors Involved

At its most effective, CVD follows the supply chain affected by the vulnerability. As a mental
model, it can be useful to think of the supply chain as horizontal or vertical. A horizontal supply
chain implies that many vendors need to independently make changes to their products in order to
fix a vulnerability. A vertical supply chain implies that one vendor might originate the fix, but
many other vendors may need to update their products after the original fix is available. Software
libraries tend to have vertical supply chains. Protocol implementations often have horizontal sup-
ply chains.

We discuss horizontal and vertical supply chains in Section 5.4.2 below.

3.5.7.4 CVD Disputes

Occasionally vendors and reporters have difficulty arriving at a mutually acceptable response to
the existence of a vulnerability. Disputes can arise for many reasons, including the following:

• whether the behavior described in the report is reproducible
• whether the behavior described in the report has security implications
• the impact of the vulnerability to deployed systems
• whether to publicly disclose the vulnerability
• how much detail to include in a public disclosure
• the timing of public disclosure
• whether extensions should be made to deadlines set by one party or another, whether or not

they have been mutually agreed to previously

In these situations, and many others, reporters and/or vendors may find it useful to engage the ser-
vices of a third-party coordinator to assist with conflict resolution. Drawing on the experience and
relative neutrality of a third-party coordinator can often dissipate some of the potential animosity
that can arise in contentious cases.

3.5.7.5 Major Infrastructure Impacts

In situations where a vulnerability has the potential for major impact to critical infrastructure, it
may be necessary to coordinate not only with vendors to fix the vulnerable products, but also with
major deployers. The primary concern in these cases is to ensure that internet and other critical
infrastructure remains available so that deployers and other network defenders can acquire and de-
ploy the necessary information and patches.

Luckily this scenario is rare, but we have seen it come up in cases affecting internet routing, the
Domain Name System (DNS), internet protocols, and the like. Vulnerabilities that affect basic In-
ternet services such as DNS (which also serves as an example of a horizontal supply chain) affect
a massive number of vendors; a coordinator can help contact and disseminate information to ven-
dors, service providers, and other critical organizations for quick remediation.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.6 Other Roles and Variations

There can be other roles in the CVD process too, but they tend to be subordinate to the ones al-
ready described. We discuss a few of them here.

3.6.1 Users

Individual users of vulnerable products overlap with deployers as described above. In the case
where the user must trigger an update or install a patch, the user is playing the role of a deployer.
In other cases, the user depends on another deployer (e.g., the user’s IT support staff or an app
store’s automatic update capability). In these latter cases the user does not play as active a role in
the vulnerability response process.

3.6.2 Integrator

System integrators most often can be considered as playing the deployer role; however, depending
on their contractual responsibilities and business relationships, they may also play roles as ven-
dors or even coordinators in some cases.

3.6.3 Cloud and Application Service Providers

Insofar as cloud-based services are built on traditional computing platforms, cloud service provid-
ers can be considered deployers as we’ve described above. However, as cloud-based services
(e.g., software, platform, and infrastructure as a service) have risen to prominence, they have also
distinguished themselves from traditional software vendors in that their development, deploy-
ment, and delivery processes for security fixes tend to be much more direct.

For many cloud providers, the number of distinct instances of their software is quite limited, and
control is centralized, so there are fewer independent decision makers in the path from vulnerabil-
ity report to patch deployment.

Furthermore, the prevalence of DevOps practices among such providers means that the time from
code commit to last vulnerable system patched can sometimes be measured in minutes. To be
sure, development and delivery processes in traditional software environments have accelerated
considerably as well, but the fact that cloud service providers have direct control over the vulnera-
ble systems makes a significant difference in their ability to mitigate vulnerabilities across all
their users in short order.

3.6.4 Internet of Things

Another class of vendors are the purveyors of Internet of Things (IoT) products. The physicality
of IoT products and services often places them on the opposite end of the deployment spectrum
from cloud-based services.

Unlike most other devices (laptops, PCs, smartphones, tablets), many of today’s IoT products are
either non-updateable or require significant effort to update. Whether we’re talking about cars, tel-
evisions, medical devices, airplanes, sensors, home automation, or industrial control systems, too
often today the patch deployment process involves going out and physically touching the thing
that must be updated. Systems that cannot be updated become less secure over time as new vul-

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

nerabilities are found and novel attack techniques emerge. Because vulnerabilities are often dis-
covered long after a system has been delivered, systems that lack facilities for secure updates once
deployed present a long-term risk to the networks in which they reside. This design flaw is per-
haps the most significant one already found in many IoT products, and if not corrected across the
board, could lead to years if not decades of increasingly insecure devices acting as reservoirs of
infection or as platforms for lateral movement by adversaries of all types. Patch deployment will
likely improve as more connected things get over-the-air (OTA) update capabilities, but there is
already a large installed base of systems lacking such features.

Furthermore, systems at the lower end of the price range might have “fire and forget” assumptions
built into their pricing model, meaning that there is neither the technical means to deliver updates
nor the support capability in place to even develop them in the first place. In the long run, regula-
tory intervention may influence IoT vendors to improve their vulnerability response capabilities,
but the gap today is large and will likely be difficult to close entirely unless market incentives
shift toward more holistic and improved security posture.

Another issue with IoT devices is their supply chain, whereby the vendor of the final product ac-
tually has very little to do with the hardware, firmware, or software development of the product it
sells. We frequently observe pervasive use of third-party libraries in integrated products with nei-
ther recognition of nor adequate planning for how to fix or mitigate the vulnerabilities they inevi-
tably contain. When developers embed a library into their product, that product often inherits vul-
nerabilities subsequently found in the incorporated code. Although the third-party library problem
is equally pervasive in the traditional computing, cloud, and mobile worlds, it is even more con-
cerning in contexts where many libraries wind up as binary blobs and are simply included in the
firmware as such. Lacking the ability to analyze this black box code either in manual source code
reviews or using most code analysis tools, IoT vendors may find it difficult to examine and im-
prove the code’s security.

3.6.5 Mobile Platforms and Applications

Mobile devices present yet another class of stakeholders that has grown distinct in recent years.
The device vendors themselves are most akin to IoT vendors, but app developers can be quite a
diverse bunch, ranging from very large traditional software companies, to cloud service providers,
to novices with a good idea and a few hours of coding. Perhaps the most significant outstanding
issue is that many mobile devices have multi-stage, vertical supply chains, each step of which can
stand in the way of security updates reaching their intended beneficiaries (i.e., the users) [62]. In
both the mobile and IoT spaces, high-viscosity supply chains are bad for end-user security.

3.6.6 Governments

Governments are multifaceted stakeholders in regards to cybersecurity vulnerabilities and their
disclosure. While they have always had a role as owners and operators of vulnerable networks and
systems, issues surrounding vulnerability discovery, coordination, disclosure, and mitigation have
become increasingly important to governments worldwide.

As the industries they regulate move toward increasing connectivity, agencies with oversight re-
sponsibilities will likely see an increased demand to extend their safety monitoring to include se-
curity issues (especially for security issues that directly impact safety). To that end, changes are

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

happening rapidly on multiple fronts. For example, in the United States recent developments in-
clude the following: The FDA Medical Device Reporting process enables oversight and detection
of potential device-related safety issues [63]. The National Highway Transportation and Safety
Commission (NHTSA) collects reports of vehicle safety issues, which helps to drive its investiga-
tion and recall processes [64]. The FAA offers a number of safety reporting capabilities as well
[65].

Beyond just documenting observed issues, some government agencies take an active learning ap-
proach when broader engineering failures occur. The aforementioned FDA and NHTSA reporting
programs serve this purpose, but other programs exist as well. For example, the National Trans-
portation Safety Board is explicitly tasked with investigating transportation accidents, and NASA
collects lessons learned in a public database [66]. This kind of continuous improvement process
has demonstrated its effectiveness in a variety of environments and seems to provide a good
model for cybersecurity vulnerabilities in both the private and public sectors.

The United States is not alone in realizing that vulnerability discovery, disclosure, and remedia-
tion is important to national interests. These cybersecurity issues have been global for quite some
time. The EU Parliament recently held hearings on modernizing export controls and the trade in
zero-day vulnerabilities [67]. Meanwhile, a quick glance at the vulnerability database catalog be-
ing developed by the FIRST gives a good indication of the international interest in this problem
space [68].

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4 Phases of CVD

You go through phases. You have to reinvent reasons for playing, and one year’s answer
might not do for another.

-Yo-Yo Ma

There are a number of proposed models of the CVD process that have slightly varying phases [17]
[18] [45] [69]. Below, we adapt a version of the ISO/IEC 30111 [45] process with more phases to
better describe what we have seen at the CERT/CC.

• Discovery – A researcher (not necessarily an academic one) discovers a vulnerability by us-
ing one of numerous tools and processes.

• Reporting – A researcher submits a vulnerability report to a software or product vendor, or a
third-party coordinator if necessary.

• Validation and Triage – The analyst validates the report to ensure accuracy before action
can be taken and prioritizes reports relative to others.

• Remediation – A remediation plan (ideally a software patch, but could also be other mecha-
nisms) is developed and tested.

• Public Awareness – The vulnerability and its remediation plan is disclosed to the public.
• Deployment – The remediation is applied to deployed systems.

A mapping of CVD phases to CVD roles is provided in Table 2.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table 2: Mapping CVD Roles to Phases

We will next discuss each of these phases in more detail.

4.1 Discovery

Reports that say that something hasn’t happened are always interesting to me, because as we
know, there are known knowns; there are things we know we know. We also know there are
known unknowns; that is to say we know there are some things we do not know. But there

Roles 

Phases

Finder Reporter Vendor Coordinator Deployer

Discovery Finds vulner-
abilities

Reporting Prepares
report

Reports vuls
to vendor(s)
and/or
coordinators

Receives
reports

Receives
reports

Acts as
reporter
proxy

Validation
and Triage

 Validates
reports
received

Prioritizes
report for
response

Validates
reports
received

Prioritizes
report for
response

Remediation Confirms fix Prepares
patches

Develops
advice,
workarounds

Coordinates
multiparty
response

Develops
advice,
workarounds

Public
Awareness

Publishes
report

Publishes
report

Publishes
report

Publishes
report

Receives
report

Deployment Deploys fix
or mitigation

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

are also unknown unknowns – the ones we don’t know we don’t know.
– Donald Rumsfeld

Aside from the simplest applications, software development is difficult, complex, and prone to er-
ror. As a result, the likelihood that any given software-based product or component is free of vul-
nerabilities is extremely low. For vendors, this implies the need to create a response capability to
handle vulnerability reports, whether those reports come from sources internal or external to the
vendor.

4.1.1 Why Look for Vulnerabilities?

Ultimately, we can’t fix vulnerabilities we don’t know about. While software engineering best-
practices, code audits, testing (including fuzzing), and application security testing are important
parts of the development lifecycle, security research is important for rooting out hidden vulnera-
bilities. Some organizations may have in-house expertise to find and identify security vulnerabili-
ties, but most will not. For some vendors, encouraging independent vulnerability finders may be
the only way to stay on top of the latest trends in vulnerability research and exploitation tech-
niques.

Many organizations hire application security testers or code auditors to look for vulnerabilities.
While such testing is certainly important and commendable, it is important to understand that ab-
sence of evidence is not always evidence of absence. Rumsfeld’s point about unknown unknowns
applies here. A clean audit or pen test report should not be taken as evidence that the software is
free of vulnerabilities. All software-based systems have problems we’re not even aware of and so
we don’t even know to look for them. Because such vulnerabilities may exist and can be exploited
without warning, vendors and deployers should establish their VR capability in preparation for
this eventuality.

4.1.2 Avoid Unnecessary Risk in Finding Vulnerabilities

Finders should exercise an appropriate degree of care when performing vulnerability research.
This will help to alleviate legal concerns and limit the potential for damage to others.

Vulnerability research should of course be performed on equipment that the finder is authorized to
use for the purpose. If the research is performed on behalf of an organization such as a private se-
curity firm or university, permission should be obtained before attempting research on organiza-
tion-owned equipment.

Likewise, organizations should make the rules and process for obtaining permission very clear
and easy to find. For example, a form or email address provided on an intranet page might be suf-
ficient. Employees hired specifically to find vulnerabilities should be briefed on necessary rules
and provided with concrete permission as part of the on-boarding process. Failure to adequately
document permissible scope and authority for vulnerability testing can lead to frustration and
other negative consequences with various legal ramifications.

4.1.2.1 Operational Risk

In general, the software or devices tested should not be production systems that support or have
access to real data or users. When possible, dedicated, controlled testing environments should be

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

established. Such a testing environment often consists of virtual machines (VMs) in a virtual net-
work firewalled off from any production network. Even as a finder in a controlled testing sce-
nario, you should keep in mind the potential for unintended consequences (i.e., the unknown un-
knowns). Always try to limit the potential for unintended negative impact of testing, even within
your controlled environment. If the impact cannot be constrained to a controlled environment with
relatively known consequences, do not attempt to test your exploit and instead report your find-
ings directly to the vendor.

4.1.2.2 Safety Risk

Safety-critical systems have been defined as “systems whose failure could result in loss of life,
significant property damage, or damage to the environment [70].” A high degree of caution is
both appropriate and necessary when testing the security of safety-critical systems, such as medi-
cal devices, industrial equipment, or vehicles. A proof of concept exploit to demonstrate a vulner-
ability on a traditional computer might cause a calculator to pop up on the screen. A proof of con-
cept exploit on a car might cause it to behave erratically, potentially leading to injury or death.
Testing or demonstrating safety-critical systems outside a controlled environment, or when there
is any chance of harming unwitting bystanders is unacceptable under any circumstances.

4.1.2.3 Legal Risk

Depending on the circumstances, finders may be subject to a non-disclosure agreement (NDA)
regarding any vulnerabilities found. This is often the case when vulnerability testing is performed
on behalf the vendor whether directly as an employee, or under contract as part of a consulting
firm or as a freelance consultant. Finders should be aware of this possibility and consider the legal
implications of any relevant NDAs before reporting a vulnerability to any third party.

That said, vendors are strongly encouraged to avoid requiring NDAs of reporters if at all possible.
Many finders prefer to avoid the legal entanglements that NDAs entail and will be discouraged
from reporting vulnerabilities when an NDA is involved. This can leave vendors unaware of po-
tential threats to their products and services and in turn, their users.

Additionally, in some environments, such as medical devices, healthcare, education, or financial
information systems, there may be legal consequences to accessing real data (under HIPAA [71],
FERPA [72], COPPA [73], and similar laws, industry standards such as PCI DSS [74], etc.), so
we again reiterate the need to perform research only in controlled test environments, preferably
with fake data.

For more information on the legal implications of vulnerability disclosure, we refer you to the
EFF’s Coders’ Rights Project Vulnerability Reporting FAQ [75].

4.2 Reporting

No matter who you are, most of the smartest people work for someone else.

– Bill Joy, Sun Microsystems

Vendors need a mechanism to receive vulnerability reports from others. This reporting mecha-
nism should be easy enough to use that it encourages rather than discourages reports. It can be as

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

simple as a dedicated email address for reporting security issues, a secure web form, or a bug
bounty program.

4.2.1 Create Secure Channels for Reporting

Whether you are a vendor or a coordinator, you need to have open channels for communication
with vulnerability finders and reporters. In our experience, the most common means of communi-
cation is email. For this reason, the CERT/CC recommends that vendors establish a specific and
well-publicized email alias such as <security@example.com> solely for receipt of vulnerability
reports.

However, since email is an insecure communications channel by default, many vendors, reporters,
and coordinators prefer to use encrypted mail instead. Although x.509 encrypted mail exists, we
have found PGP-compatible tools such as GnuPG to be more widely used by CVD participants.
Vendors are encouraged to create and publish a PGP key affiliated with the security email alias to
allow the confidentiality of sensitive reports to be maintained in transit.

Alternatively, some vendors choose to offer a web form specifically for receiving reports of secu-
rity-related issues. Such forms can then deliver the report directly to your security or engineering
team. The CERT/CC discourages reliance on general “Contact Us” web forms that pass through
an organization’s communications or customer support teams. Many finders will balk at having to
get past these nontechnical interfaces into the vendor. In addition, security messages often must
be triaged and processed differently than other incoming contacts.

Another possibility is to make use of a third-party bug bounty or coordination platform. For more
information on common CVD tools, see Section 7.

4.2.2 Encourage Reporting

Anyone who becomes aware of a vulnerability that does not appear to have been remediated
should report the vulnerability to the vendor. One should not assume that a vendor is aware of a
specific vulnerability unless it has already been publicly reported, whether by the vendor or else-
where. The easier it is to report vulnerabilities to a vendor, the less likely that the vendor will be
surprised by vulnerability reports disclosed directly to the public.

Aside from the technical aspects of encouraging reporting, vendors can also provide reporters
with other incentives, as discussed in Section 2.4.

4.2.3 Reduce Friction in the Reporting Process

As a vendor, it is important to not treat reporters with suspicion or hostility. It’s likely they have
important information about your product, and they want to share it with you.

Furthermore, vendors should take care not to frustrate reporters’ attempts to make contact by
building too many assumptions into their CVD process. In the course of our own vulnerability co-
ordination efforts, we have observed all of the following erroneous assumptions built into ven-
dor’s CVD process:

• The reporter is always a customer or has a customer ID. – At the CERT/CC, we have hit
walls in our communication attempts when a vendor’s technical support function refuses to

mailto:security@example.com

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

help us without a customer ID number. Be sure your tech support staff understand how to
forward vulnerability reports to the appropriate individuals or groups within the organiza-
tion. Vulnerability reports can arrive from anyone.

• The reporter is willing and/or able to fill out a web form. – Some reporters prefer to use
anonymous email; be sure you have more communication lines open than just a web form.

• The reporter is a human. – Sometimes reports can be auto-generated by tools. Include a
clearly defined reporting format for tools if at all possible.

• The reporter can send or receive encrypted mail. – The CERT/CC encourages encrypted
mail when possible, but it is not appropriate to presume all reporters can or must use en-
crypted mail. If the reporter declines to use encrypted mail, offer other options. These may
include encrypted zip files or a company upload service such as FTP.

• The reporter has an account on your private portal. – The reporter may not be a customer
with a portal account; furthermore, the reporter may wish to remain anonymous and will be
unwilling to register for a portal account. Again, be sure it is easy for reporters to find more
than one communication channel.

• The reporter will wait indefinitely for your reply before communicating with others about
what they know. – Technology sometimes fails, and we wonder if a message was received. It
is helpful to let the reporter know as soon as possible that the report was received. Give regu-
lar updates on the process so that the reporter is involved and there is mutual understanding.
If reporters are kept out of the loop, they may seek out a third-party coordinator or even pub-
lish their report without notice.

• The reporter will keep your correspondence private. – Lack of response or rudeness on the
part of a vendor may result in the reporter choosing to post the correspondence publicly. In
addition to the negative attention this draws to the vendor and reporter alike, such negative
experiences may discourage finders and reporters from reporting vulnerabilities to the ven-
dor in the future.

4.2.4 Providing Useful Information

Reporting a vulnerability requires that the vulnerability is well-documented. This typically means
providing the following information:

• the exact product version(s) affected
• a description of how the vulnerability was discovered (including what tools were used) or

what you were doing when you encountered the vulnerability
• proof of concept (PoC) code or reproduction instructions demonstrating how the vulnerabil-

ity might be exploited
• ideally, a suggested patch or remediation action if the reporter is aware of how to fix the vul-

nerability
• description of the impact of the vulnerability and attack scenario (Kymberlee Price discusses

the importance of providing a clear attack scenario in her article [76].)
• any time constraints (for example, give a date of publication or presentation at a conference

if you know)

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Reporters that do not provide enough information to a vendor or coordinator may find their re-
ports delayed or even rejected. Using CWE [77] or CAPEC [78] as a reference might be helpful to
describe the type of vulnerability you have found and common ways to fix it the problem

An example of a template for a vulnerability report, based on the CERT/CC’s own Vulnerability
Reporting Form (VRF) [79], is provided in Appendix D.

Vendors that require additional information to validate reports should clearly document their spe-
cific requirements in their vulnerability disclosure policy, reporting form, or process description.

4.3 Validation and Triage

Extraordinary claims require extraordinary evidence.

– Carl Sagan

When a vendor or coordinator receives a vulnerability report, it’s usually necessary to prioritize it
along with other vulnerability reports already in progress, new feature development, and possibly
other non-security bug fixes. As a result, there are a few considerations to be made in dealing with
incoming reports.

4.3.1 Validating Reports

Vulnerability reports received from potentially unknown sources may hold inaccurate infor-
mation. One of the first tasks for the receiver of a report is to analyze the report’s validity. A vul-
nerability report is basically an assertion that some set of conditions exists that permits an adver-
sary to take some action in support of a goal. But just because it was reported doesn’t make it true.
Replication of the salient claims made in the report is an important step in the case handling pro-
cess.

4.3.1.1 Recognizing High-Quality Reports

Not all reports are actionable. Some reports may under-specify the problem, making it difficult or
impossible to reproduce. Some may contain irrelevant details. Some will be well written and con-
cise, but many will not. Some reports could describe problems that are already known or for
which a fix is already in the pipeline.

In easy cases, a simple description of the vulnerability, a screenshot, or a copy/pasted snippet of
code is all that is necessary to validate that a report is likely accurate. In more complex scenarios,
stronger evidence and/or more effort might be required to confirm the vulnerability. Responsive
vendors should ensure analysts have access to appropriate resources to test and validate bugs,
such as virtual machines (VMs), a testing network, and debuggers.

It may be that reproducing the vulnerability is beyond the capability or time available by the first-
tier recipient at the vendor. Most often this occurs when the conditions required to exploit the vul-
nerability are difficult to reproduce in a test environment. In this case, the triager can weigh the
reputation of the reporter against the claims being made in the report and the impact if they were
to be true. You don’t want to dismiss a report of a serious vulnerability just because it is unex-
pected. A reporter with a high reputation might give weight to an otherwise low-quality report

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

(although in our experience finders and reporters with a high reputation tend to have earned that
reputation by submitting high-quality reports).

If there is difficulty in reproducing the vulnerability, follow up with the reporter promptly and
courteously; be sure to be specific about what you tried so that the reporter can provide effective
advice. In some cases, a report might be placed in a holding pattern while additional information
is requested from the reporter.

The possibility also exists that someone could be sending you reports to waste your time, or erro-
neously believes the report is much more serious than your analysis suggests. Not all reports you
receive warrant your attention. It is usually reasonable to decline reports if you provide the re-
porter with a summary of your analysis and the ability to appeal (presumably by providing the
needed clarifying information).

Reporters should review Section 4.2 to ensure the report contains enough details for the recipient
to verify and reproduce a vulnerability. Be as specific as you can. Vendors that follow up with
questions are doing the right thing, and attempting to validate your report; be friendly and courte-
ous and attempt to provide as much detail and help as you can.

4.3.2 Triage Heuristics

Even for the reports a vendor accepts as legitimate and worthwhile, it is likely that the develop-
ment team does not have time to address every report at the moment it arrives. Thus, if a report is
found to be valid, the next question is how to allocate resources to the report. Most often this re-
quires some measure of how severe the vulnerability is. In some scenarios, the vulnerability may
be a critical flaw that requires immediate action, while other cases might indicate a very rare and
hard-to-exploit vulnerability that should be given a low priority.

There are a number of heuristics for evaluating the severity of vulnerabilities. Perhaps the most
commonly known of these is the Common Vulnerability Scoring System (CVSS) [80]. This sys-
tem allows a short standard description of the impact of a vulnerability and can be mapped to a
score between 1.0 and 10.0 to help prioritization. A related but different metric is the Common
Weakness Scoring System (CWSS) [81]. Whereas CVSS addresses the detailed impact of a spe-
cific vulnerability, CWSS can be used to evaluate the impact of a class of weaknesses. While
scoring systems like CVSS and CWSS can be useful at establishing relative severity among re-
ports, care must be taken in their use since scores do not always map well onto a vendor’s or de-
ployer’s priorities.

Vendors should ensure their analysts are trained in the chosen heuristic and understand its
strengths and weaknesses so that its result can be overridden when necessary. We do not, for ex-
ample, recommend blind adherence to hard cutoffs such as “We only bother with reports that have
a CVSS score greater than 7.0.” No vulnerability scoring system is so precise. Ideally, whatever
prioritization scheme is used should also be made transparent to reporters so that the process is
understood by all stakeholders. Transparency in this part of the process can help prevent frustra-
tion and confusion when reporter and vendor disagree on severity of a vulnerability.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4.4 Remediation

A vulnerability can be remediated by providing a fix. Alternatively, mitigation instructions can
often be developed as an interim solution.

Once the scope of the vulnerability has been adequately ascertained, it’s time to prepare and test
the fix (patch). The sequence of tasks tends to include identifying and isolating the vulnerability
in the code; changing the code to eliminate the vulnerability; testing the changes, packaging the
changes for distribution; and distributing the updated product. While the details of how to do this
are often specific to the product as well as the vendor organization and its development process
and are thus outside the scope of this document, we review each step in this section.

4.4.1 Isolating the Problem

Once a vulnerability report has been received and validated, it must be added into the work queue
for the development team to isolate the underlying problem. This often requires input from devel-
opers knowledgeable in the code in order to precisely define the problem and understand its im-
pacts.

Often a report will describe a single path to exploit a vulnerability, yet there may be other ways
for an attacker to reach the same code and exploit it a different way. This makes it necessary for
the developers and analysts responsible for fixing the code to explore the potential for other ave-
nues of exploitation before zeroing in on the specific conditions found in the original report.

There is also the risk that the vulnerable code or component has been reused elsewhere. We have
encountered vulnerabilities in multiple codebases that arose because a single developer worked on
each project, copying the same vulnerable code into each of them.

4.4.2 Fix the Problem

Reporters and finders should recognize that developing, testing, and preparation of patches for de-
ployment often requires some time. A vendor acting in good faith to ferret out the vulnerability
and fix it thoroughly should usually be granted some leeway. A well-tested patch that is issued
later is preferable to a prematurely released patch that creates further problems. We encourage
finders, reporters, and vendors to communicate expectations early and often with respect to the
status of the fix creation process as long as a vendor is responsive.

4.4.3 Mitigate What You Cannot Fix

In most cases, knowledge of a vulnerability leads the vendor to create and issue a fix to correct it.
As a stopgap in scenarios where it may not possible to develop a timely fix, a vendor or third
party will sometimes provide advice on actions that can be taken to mitigate the effects of the vul-
nerability. Sometimes this advice is as simple as instructions for disabling the affected features of
the system. In other cases, mitigation advice might include detailed configuration changes to be
made by deployers. However, in nearly all cases a full fix for the vulnerability is preferable to
mitigation advice, which should at best be treated as a temporary solution to the problem.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4.5 Gaining Public Awareness

For defenders, deploying patches requires effort and is often avoided unless there is sufficient jus-
tification. Therefore it is important to provide at least a brief description of the vulnerability in the
release notes for the updated code. Knowledge of the existence of a vulnerability is often the key
driver causing patches to be deployed. A silent fix2 is far less likely to be widely deployed than
one that is clearly described.

Even within the CVD process, there are still many decisions to be made about the disclosure pro-
cess. The audience, timing, and amount of information released can vary because of a number of
factors. These choices might even vary from report to report, depending on the impact and conse-
quences of a particular vulnerability.

Generally, finders, reporters, vendors, and coordinators should consider the following questions in
establishing their policies and practices:

• Should you disclose at all? – Generally, the answer will be yes, but there may be factors that
influence this decision. For example, some vulnerabilities, if exploited, could place lives in
danger or cause severe socioeconomic harm. As a result, it may be prudent for reports of
such vulnerabilities to be held indefinitely until the population of vulnerable systems has
been reduced through patching or obsolescence. However, any decision to defer disclosure
should be considered provisional or contingent on the continued absence of evidence of ex-
ploitation or adversarial knowledge of the vulnerability.

• What information will you disclose? – For example, will you publish all information about
the vulnerability, including proof of concept code, or will you only release a brief description
of the problem and a remediation? Generally speaking, there is a minimum amount of infor-
mation required in order for a vulnerability report to be useful. Recall that the point of dis-
closure is to provoke some action, most often by deployers or any downstream vendors who
were not already involved in the coordination process. If the details provided to the recipient
are insufficient to cause that action to be taken, the disclosure process will not succeed.

• To whom will you disclose? – In most cases, the disclosure should be made publicly. How-
ever, in some scenarios the disclosure may be to a specific limited group. For example, if the
pool of users is small and the vendor reaches out to every impacted user, a public disclosure
may be unnecessary.

• Via what channel(s) will you disclose? – Will the vulnerability information be published on
the vendor’s website? The reporter’s blog? BugTraq [82], Full Disclosure [83], or other
mailing lists? Will you draw attention to it on social media? There are pros and cons to most
of these options that must be weighed. When available, an organization’s communications or
public relations groups should be involved in planning for the disclosure process. While it is
usually neither possible nor practical to have every CVD case flow through them, leveraging
their expertise in planning and developing the CVD capability can improve the process con-
siderably.

2 Where the vendor knows about and fixes the vulnerability but fails to mention the vulnerability’s existence in the
subsequent release notes accompanying the new version.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• What is your expectation of others in disclosing further (or not)? – Be sure to discuss your
expectations with all stakeholders and be prepared to negotiate.

Vendors in particular will need to address three main questions in providing vulnerability and fix
information to defenders:

• What information should be provided about the vulnerability?
• Where should this information be provided?
• What, if any, additional measures should be taken to draw attention to the existence of the

vulnerability or the availability of its fix?

4.5.1 Prepare and Circulate a Draft

Prior to public announcement of a vulnerability document, we find it helpful to circulate a draft
document describing the vulnerability to give CVD participants an opportunity for discussion and
commentary.

At a minimum, a draft advisory should be shared between the reporter and vendor to reduce the
likelihood of either party being taken by surprise. Ideally, both parties should use this document to
coordinate how much information is being released, and what future expectations might exist.
Both parties also have the opportunity to correct erroneous information, as well as verify that
credit for discovering or reporting the vulnerability is given to the correct person or organization.
If multiple vendors are affected, or there are affected downstream vendors making use of the vul-
nerable software, it can be useful to share a draft with some or all of the affected vendors for even
more feedback. Be sure to also discuss what channels to use for publication and disclosure.

The Traffic Light Protocol (TLP) may be useful when sharing draft information. We discuss ap-
plications of TLP to CVD in Section 7.2.2.1.

An example of a template for a vulnerability disclosure document is provided in the appendices.

4.5.2 Publishing

Once the draft circulation phase is complete, the next step is publishing the vulnerability docu-
ment to whatever channels have been identified during previous phases.

Some vendors have a specific website that lists all their security advisories to date. Others might
email the disclosure to a user mailing list or a security mailing list such as Full Disclosure [83] or
BugTraq [82]. Reporters themselves may also chose to disclose by posting the advisory to a mail-
ing list or including it in a personal or company blog. A common goal for reporters in the CVD
process is to synchronize their publication with the vendor’s response. As a result, near-simultane-
ous publication occurs quite often.

It is generally courteous for the vendor and reporter to contact each other after disclosure to in-
form one another that the disclosure went through as planned and provide URLs to the published
documents.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4.5.3 Vulnerability Identifiers Improve Response

Many vulnerability reports can be similar, and sometimes a vendor or coordinator might receive
multiple reports of similar vulnerabilities at the same time. Sometimes this is due to independent
discovery, which we discuss in Section 6.5. Other times it reflects a report traversing multiple
paths to arrive at its destination within the CVD process. This is fairly common in cases where a
vulnerability affects products from multiple vendors. Using a common identifier improves coordi-
nation as it ensures that all coordinating parties can keep track of the issue.

The most common identifier in use today is the CVE ID [14], which is meant as a globally unique
identifier for a public vulnerability report. CVE IDs can be obtained from the CVE Project at
MITRE or one of several CVE Numbering Authorities (CNAs) established by MITRE—typically
the vendors of common software products themselves [84]. Both reporters and vendors can re-
quest a CVE ID, but reporters should first check if the vendor they are coordinating with is al-
ready a CNA. This identifier should be included in any pre-disclosure shared drafts, so that all
parties are aware of the common identifier.

4.5.4 Where to Publish

Publicly disclosing the existence of a vulnerability and the availability of its fix is usually consid-
ered to be the primary goal of the CVD process. Vendors will often provide vulnerability infor-
mation

• on the vendor’s public website. Many vendors offer a security-focused section within the
support section of their online offerings.

• to a public mailing list or a vendor-specific list

Vendors of bespoke software or products with highly focused customer bases are sometimes rea-
sonably confident that they can reach their affected users directly. These vendors often publish
vulnerability and fix information

• on a customer-only site
• via a customer support mailing list
• by individually notifying customers, for example through the technical sales channel

However, even with a well-organized customer contact database, it can be difficult for a vendor to
be certain that all relevant decision makers are reached in a timely manner. Hence, we recommend
that vendors publish at least basic vulnerability and fix announcements to their public website in
addition to whatever direct customer contact communications they provide.

4.6 Promote Deployment

Although we tend to think of the CVD process as ending with the disclosure of a vulnerability, if
the fix is not deployed the rest of the exercise is futile. A patch that is quietly posted to a website
and not well advertised is almost useless in protecting users from vulnerabilities.

Deploying patches typically implies getting users, customers, and deployers to take positive ac-
tion. Many software products are used by non-technical users. These users are often unaware of

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

how to take remediative action for a vulnerability. A vendor’s disclosure plan should consider
how to reach the widest audience.

Products with secure automatic updates provide a good way to get a patch deployed quickly to a
wide audience. However, not all users are able or willing to use automatic updates, so it is still im-
portant for vendors to draw attention to their fixes. Vendors should strive to implement easy and
secure update methods in their products. In situations where this is not possible, the vendor’s dis-
closure plan should be specific about how to spread the word of a new patch as quickly as possi-
ble.

4.6.1 Amplify the Message

Sometimes it is necessary to draw more attention to a problem or fix. Critical vulnerabilities, in-
cluding those that are already being exploited or are highly likely to be exploited, may warrant at-
tracting attention beyond merely publishing a document on the vendor’s support site. In such
cases, additional measures should be taken to draw attention to the existence of the vulnerability
or the availability of its fix. Vendors should consider using

• announcements via social media. Many defenders use services like Twitter or Reddit as part
of their daily situation awareness process, routinely sharing useful links and references with
each other.

• mass media such as press releases, press conferences, and media interviews
• working with a coordinator or government agency to draw attention to a vulnerability or its

fix. In particular, National CSIRTs can often provide advice or assistance with publicity on
important issues.

4.6.2 Post-Publication Monitoring

Once a vulnerability and/or its fix has been disclosed, both vendors and reporters should look for
feedback concerning any problems with either the documentation or the fix. In some cases, this
can take the form of technical monitoring (e.g., monitoring download logs from the vendor’s up-
date service, checking inventories of deployed system versions, or even scanning) to ascertain the
rate of defender deployments. Even if such technical monitoring is not possible, not permitted,
risky, costly, or otherwise impractical, it is usually possible to monitor for user feedback via sup-
port requests, online discussions, and so forth.

In the event of slow uptake of the fix, additional effort might be warranted to call attention the
vulnerability (for example, using social media), as discussed in Section 4.6.1.

It is also possible that the remediation advice is incorrect, or may not apply to all scenarios.
Therefore the vendor and reporter should monitor for public discussion or reports of problems, so
that the disclosure advisory and remediation information can be updated as necessary. Remember,
the goal for remediation is to fix vulnerable product instances or at least reduce the impact of the
vulnerability. Consequently, if a significant portion of the vulnerable product instances have not
been remediated, that goal has not been achieved.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5 Process Variation Points

All evolutionary biologists know that variation itself is nature’s only irreducible essence…I
had to place myself amidst the variation.

– Stephen Jay Gould

While the previous section described the phases common to most CVD process implementations,
there is considerable room for variation in the CVD process. In this section we explore a few of
the variations we most often encounter.

5.1 Choosing a Disclosure Policy

For those responsible for implementing the CVD process, defining a disclosure policy is an im-
portant first step. A well-defined policy makes it clear what other participants in the CVD process
can expect when they engage with you and establishes good relationships between finders, report-
ers, vendors, coordinators, and other stakeholders.

A disclosure policy typically describes what CVD stakeholders (finders, reporters, vendors, coor-
dinators) can expect in terms of these factors:

• Scope – A description of the scope of issues to which the policy applies. This scope should
be as explicit as possible, especially when there are specific boundaries of concern to the or-
ganization. If a bounty is to be paid for some classes of vulnerability reports, the scope defi-
nition should clearly delineate which kinds of reports will be eligible for the bounty.

• Exceptions – Any exceptional conditions that may alter the typical flow of the process
• Safe Harbor – Should your organization choose to explicitly disavow legal retribution

against reporters who otherwise follow the policy, that fact should be clearly laid out in the
policy document.

• Report quality requirements – It’s okay to require reports to meet a certain level of quality
before committing to taking action on them. However, it’s also useful to judiciously apply
the principle of robustness here: “In general, an implementation should be conservative in its
sending behavior, and liberal in its receiving behavior” [85].

• Preferred Communication Language(s) – If the organization has preferences for specific
(human) languages for reports, the policy should specify this. That said, English is usually
acceptable as a default.

• Contact Information – How should reports be submitted? How can you be reached?
• Timing – Setting expectations for response timelines of the various milestones in a vulnera-

bility report case can be helpful too. Most important are expected time to acknowledge re-
ceipt of a report and a default disclosure timeframe if one has been defined. An acknowl-
edgement timeframe of 24-48 hours is common for vendors and coordinators, while 45-90
days seems to be the normal range for disclosures these days. That said, we recommend that
both vendors and reporters treat policy-declared disclosure timeframes as the starting point
of a negotiation process rather than a hard deadline.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

A few examples of vulnerability disclosure policies can be found in Appendix E.

RFC 2350 provides recommendations on how to publish information about your CSIRT and dis-
closure policy and procedures [86].

5.2 Disclosure Choices

As we have mentioned previously, participants in Coordinated Vulnerability Disclosure iterate
over the following questions:

1. What actions should I take in response to this knowledge?
2. Who else should I tell about it?

a. What should I tell them?

Let’s take a moment to explore questions 2 and 2a in a few scenarios. Each of these disclosure op-
tions have advantages and disadvantages. In this section, we adapt and expand some terminology
from Shepherd [87]:

• No Disclosure – All information about the vulnerability is kept private. Sometimes this is
enforced by non-disclosure agreements (NDAs). Vendors sometimes prefer this scenario to
protect trade secrets or to lessen the impact of perceived negative press. Some finders prefer
not to disclose vulnerabilities to anyone, in the hope that malicious actors will not find out
about the vulnerability if it is not disclosed. Data on the outcomes of a non-disclosure policy
are difficult to come by, as these vulnerabilities are by definition hidden from public view.

• Private Disclosure – When a product’s vendor is aware of a vulnerability, the vendor may
take action to address it but will only notify its own customer base of the vulnerability and its
mitigation privately. Many of the same motives as the No Disclosure policy are also in play
here; the hope is that malicious actors are much less likely to find out about and exploit a
vulnerability if very few people are made aware of the issue. Avoiding negative press is also
cited as a reason for this approach. Some vulnerability finders are satisfied by this method if
all known customers can be reached, so that everyone using the software may be protected.
However, this approach is often not practical for widely deployed or open source software.

• Limited (Partial) Disclosure – When a vulnerability is found, only some information about
the vulnerability is disclosed to the public. The goal is typically to slow down reverse engi-
neering and exploit development long enough for a fix to be developed and deployed. This is
done by withholding proof of concept code or other technical details of the vulnerability
while still providing enough information that users of the product may take action to mitigate
the issue.

• Full Disclosure – When a vulnerability is found, all information about the vulnerability is
disclosed to the public. Typically, this scenario results in the release of proof of concept ex-
ploit code along with a report describing the vulnerability. In some cases, finders following a
full disclosure approach may not attempt to notify the vendor at all in advance of the public
release of the vulnerability report. In other cases, they may contact the vendor simultane-
ously or shortly before issuing a public report. The belief is that this approach serves the
greater good by allowing consumers to be aware of the full impact of issues in their products
and demand action from vendors, as well as have information available to take appropriate
defensive action and make more informed purchasing decisions. Another perceived benefit is

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

that a full disclosure allows other researchers and organizations to reproduce and confirm the
vulnerability, whereas a more limited disclosure may not provide enough information to do
so. Alternately, this type of disclosure may also be performed by the vendors themselves:
many open source projects, for example, handle security issues in the open in order to max-
imize review of the vulnerability and testing of the proposed solution.

5.3 Two-Party CVD

The simplest instance of CVD is when there are only two parties involved: the finder of the vul-
nerability and the vendor who can fix the software. In this case, many of the complexities that
arise in multiparty situations do not come into play. That is not to say that two-party CVD is al-
ways straightforward or easy. It can still be difficult for the finder of a vulnerability to make con-
tact with the vendor. It can sometimes be difficult for the vendor to work with the finder toward a
resolution. Personalities, attitudes, expectations, assumptions, and egos all play a part in the suc-
cess or failure of even two-party CVD.

5.4 Multiparty CVD

Most of the interesting cases in CVD involve more than two parties, as these are the cases where
the most care must be taken. Automation of the process can help somewhat, but the impact tech-
nology can have on the problem is limited by the inherent complexities involved in trying to get
numerous organizations to synchronize their development, testing, and release processes in order
to reduce the risk to users. From a coordinator’s perspective, it can be difficult to be fair, as you’re
almost guaranteed to either miss some downstream vendor or wind up with one or more vendors
ready to release while everyone is waiting for the other vendors to catch up. We discuss this co-
nundrum further in Section 6 below.

The FIRST Vulnerability Coordination SIG [24] has published its “Guidelines and Practices for
Multi-Party Vulnerability Coordination and Disclosure” [88] which we strongly recommend read-
ing.

Success at multiparty coordination has more to do with understanding human communication and
organization phenomena than with the technical details of the vulnerability. The hard parts are
nearly always about coordinating the behavior of multiple humans with diverse values, motives,
constraints, beliefs, feelings, and available energy and time. The vulnerability details may dictate
the “what” of the response, but to a large degree human social behaviors decide the “how.”

In the next few subsections we discuss a number of issues that we have observed in performing
multiparty CVD over the years.

5.4.1 Multiple Finders / Reporters

If one person can find a vulnerability, another person can too. While documented instances of in-
dependent discovery are relatively rare, independent discovery of vulnerabilities can and does
happen. Perhaps the best-known example of multiple finders is Heartbleed (CVE-2014-0160). In
part because of the complexity of the coordinated disclosure process, a second CVE identifier was
assigned to the same vulnerability (CVE-2014-0346) [89]. We discuss independent discovery fur-
ther in Section 6.5.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.4.2 Complicated Supply Chains

Many products today are not developed by a single organization. Instead, they are assembled from
components sourced from other organizations. For example, software libraries are often licensed
for inclusion into other products. When a vulnerability is discovered in a library component, it is
very likely that not only does the originating vendor of the library component need to take action,
but all the downstream vendors whose products use it need to take action as well. Complex supply
chains can increase confusion regarding who is responsible for coordinating, communicating, and
ultimately fixing vulnerabilities, leading to delays and systems exposed to unnecessary risk.

Historically, the Android ecosystem provides a clear example of this phenomenon. A vulnerabil-
ity in a library component used in the Android operating system might have to be fixed by the li-
brary developer, then incorporated into the Android project by Google, followed by the device
manufacturer updating its custom build of Android, and by the network carrier performing its cus-
tomizations and testing before finally reaching the consumer’s device. Each additional step be-
tween the party responsible for fixing the code and the system owner (the device user, in this
case) reduces the probability that the fix will be deployed in a timely manner, if at all [62].

At the CERT/CC, we often find it useful to distinguish between vertical and horizontal supply
chains. While the vertical supply chain is most common, we do occasionally need to navigate hor-
izontal supply chains in the course of the CVD process.

5.4.2.1 Vertical Supply Chain

In a vertical supply chain, a vulnerability exists in multiple products because they all share a de-
pendency on a vulnerable library or component. One vendor originates the fix. Many vendors then
have to incorporate the originating vendor’s fix into their products. Many vendors have to publish
documents, distribute patches, and cause deployers to take action.

One example of a CVD process following a vertical supply chain is as follows: a vulnerability
might be initially identified in product X, but is then isolated to a library that product X includes
as a dependency. In this case, the library developer must be engaged as another party to the coor-
dination process in the role of patch originator. The complexity does not end there though. Once
the library vendor has completed its patch, not only does the vendor of product X have to inte-
grate the fix, but all the other vendors that include the library need to update their products as
well. We have done this kind of coordination in the past with vulnerabilities affecting MS-SQL
[90], Oracle Outside In [91], and so on. The cascading effects of library vulnerabilities often re-
sult in significant subsets of users left vulnerable while they await their product vendor’s updates.

5.4.2.2 Horizontal Supply Chain

Even more complex in terms of coordination are cases where multiple products implement the
same vulnerability, which is the primary characteristic of a horizontal supply chain. Examples in-
clude vulnerabilities arising from underspecified protocols, design flaws, and the like. Luckily
these kinds of vulnerabilities are rare. CVD can become quite complicated when they occur, be-
cause multiple vendors must originate fixes for their own implementations. Many such cases com-
bine with each originating vendor’s downstream vertical supply chain as well, which only serves
to increase the complexity. Many vendors have to publish docs and distribute patches, leading to
deployers needing to take multiple actions.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Multiple implementation vulnerabilities can sometimes result from widespread copying of vulner-
able code examples from books or websites or from developer tutorials that ignore or intentionally
disable security features in order to simplify the learning process. While we cannot place the en-
tirety of the blame for widespread Android SSL Man-in-the-Middle vulnerabilities such as
VU#582497 [92] on any specific phenomenon, our spot checks of some of the vulnerable apps
made it clear that parallel implementation of the same errors was a contributing factor in many of
the affected apps. In that case, we identified more than 23,000 distinct apps [93], and coordinated
with thousands of vendors.

A more pernicious example of multiple implementation is a vulnerability whose root cause lies in
the specification or reference implementation of a network protocol. Because most vendor’s prod-
ucts will specifically test for compatibility with these reference artifacts, such cases usually imply
that every product supporting that feature will need to be fixed. Multi-originator cases can be very
complex to coordinate. The SNMP vulnerabilities found in 2002 via the OUSPG PROTOS Test
Suite c06-snmpv1 [94] [95] [96] [97] represented just such a case, and stand to this day as the
most complex disclosure case the CERT/CC has ever coordinated.

5.4.3 Mass Notifications for Multiparty CVD

In their Usenix Security 2016 paper, Stock and colleagues [98] examined issues surrounding
large-scale vulnerability notification campaigns. In this work, which focused on notifying website
operators of vulnerabilities in their sites, they highlight significant difficulty in establishing a di-
rect communication channel with vulnerable sites. The following is from their conclusion:

How do we inform affected parties about vulnerabilities on large scale? Identifying contact
points remains the main challenge that has to be addressed by the Internet society, including
network providers, CERTs, and registrars. We imagine that this problem could, for example,
be tackled by centralized contact databases, more efficient dissemination strategies within
hosters/CERTs, or even a new notification channel or trusted party responsible for such no-
tifications. Until we find solutions to the reachability problem, the effects of large-scale noti-
fications are likely to remain low in the future.

5.5 Response Pacing and Synchronization

Problems can arise when the multiple parties involved in CVD function at different operational
tempos. In both the vertical and horizontal supply chain cases discussed above, synchronized tim-
ing of disclosure to the public can be difficult to coordinate. The originating vendor(s) will usu-
ally want to release a patch announcement to the public as soon as it is ready. This can, however,
put users of downstream products at increased risk. As a result, coordinators sometimes find it
necessary to make the difficult choice to withhold notification from a vendor in a complicated
multiparty disclosure case if that vendor cannot be trusted to cooperate with the coordination ef-
fort.

5.5.1 When One Party Wants to Release Early

In a multiparty coordination scenario, some vendors may want to release early to protect their cus-
tomers. They have a good point: should Vendor A’s customers be kept vulnerable just because
Vendor B is taking longer to prepare its response? Yet an equally strong counterargument can be
made: should customers of Vendor B be exposed to additional risk because Vendor A was faster

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

at its vulnerability response process? There is no single right answer to this dilemma. The best
you can do is keep the communication channels open and try to reduce the amount of surprise
among participants. Planning for contingencies can be a useful exercise too—the focus of such a
contingency should be how to respond if information about the vulnerability got out before you
were ready for it.

5.5.2 Communication Topology

The complexity of coordination problems increases rapidly as more parties are involved in the co-
ordination effort. Graph theory tells us the number of participant pairs increases as 𝑁𝑁(𝑁𝑁 − 1)/2
for N participants. As a result, multiparty coordination using point-to-point communications do
not scale well. Borrowing from communication network concepts, multiparty coordination involv-
ing more than a few participants can be improved with a shift to either a hub-and-spoke or shared-
bus topology in lieu of a full mesh or collection of point-to-point communications (see Figure 2).

Figure 2: Coordination Communication Topologies

The CERT/CC has historically applied a hub-and-spoke approach to coordination for cases where
it was feasible to maintain separate conversations with the affected parties. Maintaining a hub-
and-spoke coordination topology for each distinct case requires some forethought into tools and
practices, though—you can’t just carbon-copy everybody, and without good tracking tools, keep-
ing tabs on who knows what can be difficult. A hub-and-spoke topology allows a coordinator to
maintain operational security since each conversation has only two participants: the coordinator
and the other party. The tradeoff is that the coordinator (hub) can easily become a bottleneck dur-
ing especially active coordination situations.

Some of the larger coordination efforts we have encountered have required more of a shared-bus
approach through the use of conference calls, group meetings, and private mailing lists. This ap-

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

proach puts the CVD participants in direct contact with each other rather than having a coordina-
tor acting as a proxy for all communications while minimizing the communication overhead. A
shared-bus approach can increase the efficiency of communications, but can on occasion make it
harder to reach agreement on what is to be done.

5.5.3 Motivating Synchronized Release

CVD process discussions tend to focus on the handling of individual vulnerability cases rather
than the social fabric surrounding vulnerability coordination we construct over time. Shifting
away from the individual units of work to the social structure can suggest a way out of some of
the more contentious points in any given case.

We previously described the multiparty delay problem. Game theory provides us with the prison-
ers’ dilemma as model for thinking about this concern. The main takeaway from research into the
prisoners’ dilemma is that by shifting one’s perspective to considering a repeated game, it’s possi-
ble to find better solutions than would be possible in a one-shot game with no history. The recog-
nition that it’s a repeated game leads to improved cooperation among players who would other-
wise be motivated to act solely in their own self-interest in each round [99].

One approach we’ve found to work is to remind the parties involved that this will likely not be the
last multiparty vulnerability coordination effort in which they find themselves. A vendor that re-
peatedly releases early will likely get left out of future coordination efforts. Because of this, the
quicker vendors might be motivated to delay so they get the vulnerability information the next
time. Perhaps most important for those wanting to release early is to remember that this is a re-
peated game; you might be first one ready to publish this time but that may not always be the
case. Consideration for the other parties involved in any given case can yield better outcomes in
the long run.

In the end, everyone benefits from vendors improving their vulnerability response processes, so
helping the laggards become more efficient can sometimes become a secondary goal of the coor-
dination process.

5.6 Maintaining Pre-Disclosure Secrecy

Three can keep a secret, if two of them are dead.

– Benjamin Franklin

The more people who know a secret, the more likely it is to leak. Simple probability theory tells
us that even if the probability of any given party leaking is very low, the cumulative probability of
a leak increases exponentially with the number of parties involved [100].

Returning to our simple model, and the “Who needs to know what, when?” question, multiparty
disclosure highlights the need to balance need-to-know with need-to-share. There are varying de-
grees of need-to-know. Not everyone needs to know the same thing at the same time. Patch origi-
nators are usually notified early in the process, since their answer to “What do I need to do in re-
sponse to this knowledge?” (i.e., create a patch) is often on the critical path for any downstream
parties to be able to take action. Downstream vendors (patch consumers) and deployers can be no-
tified later.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.6.1 Coordinating Further Downstream

Vulnerabilities having the potential for significant impact can lead to coordination efforts beyond
the traditional product vendor space. Infrastructure and service providers are sometimes brought
in early, if there are mitigations that can be deployed in advance of the availability of a fix. This
can be especially helpful in cases where the vulnerability may affect the infrastructure necessary
to distribute the patch in the first place.

5.6.2 Do You Include Deployers?

Be careful to consider fairness though: By what criteria should you notify service provider X but
not service provider Y? At some point, the complexity of who knows what gets high enough that
the likelihood of a leak goes to 1, and you might as well go public.

5.6.3 Complex Communications Reduce Trust

It’s also important to be aware that not all participants along the chain of disclosure will be
equally trustworthy. That’s not to say they are actively malicious, just that they may have incom-
patible values or priorities that lead them to disclose the existence of the vulnerability to others
earlier than you’d prefer.

5.7 Disclosure Timing

When you say it’s gonna happen now,

When exactly do you mean?

See I’ve already waited too long

And all my hope is gone

– The Smiths, “How Soon is Now?”

How long is “long enough” to respond to a vulnerability? Is 45 days long enough? Is 90 days too
short? Is 217 days unreasonable? Three years? Talk among yourselves. We can wait.

As with so many questions that arise in the CVD process, there is no single right answer. So ra-
ther than trying to solve an underspecified set of inequalities, let’s have a look at some of the fac-
tors that tend to play into timing choices. This will give us an opportunity to see where some of
the variability comes from.

5.7.1 Conference Schedules and Disclosure Timing

Conference schedules often drive researcher timelines. This is a big one. There is a rhythmic cycle
to the vulnerability disclosure calendar. Black Hat [101] and DEF CON [102] happen in early Au-
gust every year. Usenix Security [103] is usually right after that. The RSA Conference [104] is in
the late winter or early spring. CanSecWest [105] is in the spring. Smaller conferences are scat-
tered in between. Many of these conferences rely on presenters describing novel attack methods in
varying degrees of detail. However, in order for researchers to analyze, develop, and demonstrate
those techniques, vulnerabilities are often uncovered in extant products. That means that coordi-

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

nating the disclosure of the vulnerabilities they’ve found is a common part of the conference prep-
aration process for presenters. The CERT/CC often observes an increased rate of vulnerability re-
ports a few months in advance of these conferences. Vendors would do well to be aware of these
schedules and be prepared to respond quickly and appropriately to seemingly inflexible deadlines
for disclosure.

5.7.2 Vendor Reputation and Willingness to Cooperate

Vendors that are perceived to treat vulnerability reporters poorly or that are perceived to be slow
or unresponsive may find themselves being left to discover reports of vulnerabilities in their prod-
ucts at the same time as the public becomes aware of them. CVD is a social process, remember?
And the game is played over and over, by players who share knowledge between rounds.

5.7.3 Declarative Disclosure Policies Reduce Uncertainty

Avoiding surprise was one of the principles in Section 2. To that end, explicitly declared policies
(from both researchers and vendors) are a good thing. Expected disclosure timing is an important
question to ask whenever a report is received. Sometimes the reporter or coordinator acting on the
reporter’s behalf has a standing policy of X days with no exceptions. Other reporters may be more
flexible. If in doubt, ask.

5.7.4 Diverting from the Plan

Je n’ai jamais eu un plan d’opérations.

– Napoleon Bonaparte

Plans are one thing, but reality sometimes disagrees with our assessment of it. Breaking a previ-
ous disclosure timeline agreement is sometimes necessary when events warrant. Below we cover
a few reasons to release earlier or later than planned.

Reasons to release early include

• evidence of active exploitation
• vendor fails to respond, is not acting in good faith, or denies the existence of a vulnerability
• vulnerability is known to be discovered by adversaries, so the race to defend vulnerable sys-

tems is more focused
• all known users have been notified and patched (usually via private channels)

Reasons to hold back release include

• vendor not ready with fix, but continuing to make progress and is acting in good faith
• vulnerabilities with severe impact, especially those affecting safety-critical or critical infra-

structure
• cases where new information is found late in the process, for example that there are im-

portant but previously unrecognized dependencies that alter the impact of the vulnerability or
patch deployability

In cases that divert from the planned disclosure date, it sometimes helps to seek the opinion of a
neutral third party for advice on how to proceed. Finders, reporters, and vendors can each have

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

valid yet conflicting perspectives on what the best course of action might be. Coordinator organi-
zations are often able to help resolve conflicts by taking a neutral approach to the situation and ad-
vising one or more parties in light of their prior experience.

5.7.5 Releasing Partial Information Can Help Adversaries

When considering what information to release about a vulnerability, our advice is “Don’t tease.”
Our experience shows that the mere knowledge of a vulnerability’s existence in a feature of some
product is sufficient for a skillful person to discover it for themselves. Rumor of a vulnerability
draws attention from knowledgeable people with vulnerability finding skills—and there’s no
guarantee that all those people will have users’ best interests in mind. Thus, teasing the existence
of a vulnerability in a product can sometimes provide an adversarial advantage that increases risk
to end users.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6 Troubleshooting CVD

Good process serves you so you can serve customers. But if you’re not watchful, the process
can become the thing. This can happen very easily in large organizations. The process be-
comes the proxy for the result you want. You stop looking at outcomes and just make sure
you’re doing the process right. Gulp. It’s not that rare to hear a junior leader defend a bad
outcome with something like, “Well, we followed the process.” A more experienced leader
will use it as an opportunity to investigate and improve the process. The process is not the
thing. It’s always worth asking, do we own the process or does the process own us?

– Jeff Bezos, 2016 Letter to Amazon Shareholders

I came here to make the world a better place, but I think I broke it.

– Judy Hopps, Zootopia

As we’ve mentioned throughout this document, CVD can occasionally be a complex process. In
this section, we’ll first cover some of the common ways things can go wrong and finish with some
suggestions on what to do if and when they do.

6.1 Unable to Find Vendor Contact

Any number of factors can lead to difficulty in making the initial connection between a would-be
reporter and the party or parties that can do something about the vulnerability they want to report.
Sometimes products outlive vendors. This can even happen in open source projects where the
code is still out there but the team that built it has scattered to the winds. Companies go bankrupt.
People change jobs. Maybe Vendor A included a library from Vendor B, who licensed it from C,
but they only got a binary executable and didn’t get the source code; and Vendor C is a spinoff of
a conglomerate going through bankruptcy proceedings in a different country where they don’t
speak your language. Things can get complicated.

6.2 Unresponsive Vendor

Furthermore, even when you can find the vendor, not all vendors have established processes for
receiving vulnerability reports. Again, potential reasons abound:

• They haven’t thought about it, even though they should have.
• They don’t realize they need it, even though they do.
• They think their software process is already good enough, even if it’s not.
• They assume anyone reporting a problem is an evil hacker, even though they’re wrong.

The U.S. Federal Trade Commission has brought legal action against vendors for not having suffi-
cient vulnerability response capabilities. In their complaint against ASUS [106], they cite the
company’s failure to

maintain an adequate process for receiving and addressing security vulnerability reports
from third parties such as security researchers and academics; … perform sufficient analysis

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

of reported vulnerabilities in order to correct or mitigate all reasonably detectable instances
of a reported vulnerability, such as those elsewhere in the software or in future releases; and
… provide adequate notice to consumers regarding (i) known vulnerabilities or security
risks, (ii) steps that consumers could take to mitigate such vulnerabilities or risks, and (iii)
the availability of software updates that would correct or mitigate the vulnerabilities or
risks.

Similar complaints have been included in FTC filings against HTC America [107] and Fandango
[108].

6.3 Somebody Stops Replying

Sometimes one of the parties involved in a CVD effort will stop responding. Often, this is simply
a reflection of priorities and attention shifting elsewhere rather than intentional behavior. It’s usu-
ally best to give the benefit of the doubt and keep trying to reestablish contact if one of the CVD
participants goes unresponsive.

Even in cases where the vendor has stopped responding in the midst of a coordination effort, the
CERT/CC recommends that reporters send the vendor a “heads up” message with some lead time
before publishing, optionally including a draft of the document about to be published. This helps
the vendor prepare its communication plan if necessary, and sometimes helps to identify any lin-
gering misunderstandings on the technical aspects of the vulnerability. Ammar Askar’s blog post
about a Minecraft vulnerability serves as an example where a quick heads up to the vendor could
have avoided some confusion [109].

6.4 Intentional or Accidental Leaks

Sometimes information leaks out of the CVD process. Perhaps an email gets CC’ed to someone
who didn’t need to know. Somebody might talk too much at a conference. Somebody could tweet
that they just found a vulnerability in product X, providing no other details. Somebody might in-
tentionally disclose the information to someone not involved in the supply chain for the fix.

Unfortunately, not everyone plays by the same rules. You might find information you thought was
shared in confidence showing up in some non-confidential location. It might be a simple misun-
derstanding, mismatched expectations, or in rare cases, a malicious act. Regardless of how it
leaked, there are three major questions to ask:

1. What information leaked?
2. How did the information leak?
3. How will you respond?

As we noted in Section 5.7.5, mere knowledge that a vulnerability exists in a certain component
can sometimes be enough to enable a determined individual or organization to find it. While a
partial leak of information isn’t necessarily as serious as a detailed leak, it should at least trigger
additional consideration of accelerating the disclosure timeline.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6.5 Independent Discovery

If one person can find a vulnerability, somebody else can, too. Andy Ozment [110] showed that
“vulnerability rediscovery occurs ‘in the wild’ and that it is not particularly uncommon.” Finifter
and colleagues, reviewing a dataset of Chrome vulnerabilities, identified 15 out of 668 (2.25%)
that had been independently discovered by multiple parties [111]. They go on to mention similar
rates for Firefox vulnerabilities. Ablon and Bogart [112] studied a stockpile of zero day vulnera-
bilities, estimating that “after a year approximately 5.7 percent have been discovered and dis-
closed by others.” Herr and Schneier [113] find browser vulnerabilities having rediscovery rates
between 11% and 20% annually for the years 2013-2015. For Android vulnerabilities during the
2015-2016 timeframe, they found an annual rediscovery rate of 22%.

What is to be done when the CVD process is underway for a vulnerability, and a seemingly inde-
pendent report of the same vulnerability arrives? One approach is to accelerate the disclosure
timeline, possibly disclosing immediately. This approach assumes that if a vulnerability has been
found and reported by multiple individuals acting independently, then it must be an easy vulnera-
bility to find. This in turn implies that others who haven’t reported it may also be aware of its ex-
istence, thereby increasing the likelihood of its availability to adversaries.

While we find this to be a reasonable conclusion, CVD participants should be wary of duplicate
reports that are not independent. Truly independent discovery does yield some indication of the
difficulty of finding a vulnerability. But vulnerability finders and security researchers talk to each
other, and they sometimes hunt in the same places. An announcement of interesting vulnerabilities
in a product can spur others to turn their attention and tools to that product. Even a casual “I’ve
been looking at product X and found some interesting things” can put someone else on the hunt
for vulnerabilities in product X. Any judgement of independence should consider the degree to
which there is community interest in a product. As the popularity of products wax and wane
through their lifespan, so too will security researcher attention.

An example of a coordination failure occurred during the vulnerability disclosure of Heartbleed.
Two organizations, Codenomicon and Google, both discovered the vulnerability around the same
time. When the vulnerability was reported a second time to the OpenSSL team, the team assumed
a possible leak and the vulnerability was quickly disclosed publicly [114]. A more coordinated re-
sponse may have allowed further remediation to be available immediately at disclosure time.

Even more insidious is a phenomenon we’ve observed in bug bounty scenarios. Because they pay
for reports, bug bounties can unintentionally provide incentives for finders to share their reports
with others prior to reporting, allowing multiple individuals to report the same bug, and poten-
tially share in a larger payout. CVD is a social game: as such, its incentives affect participants’ be-
havior.

Rather than prescribing a single rule that independent discovery should immediately trigger re-
lease of the vulnerability information, we suggest that CVD participants discuss the implications
of rediscovery on a case-by-case basis in order to decide the best course of action for the particu-
lar case.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6.6 Active Exploitation

If evidence comes to light that a vulnerability is being exploited in the wild, that is usually a
strong indication to accelerate the disclosure timeline. Active exploitation is indicative of either
independent discovery or an information leak from the CVD process (whether intentional or acci-
dental), with the added concern that not only does an adversary know about the vulnerability but
is already using it. Hence, in the case of known exploitation, it’s usually best to consider disclos-
ing what is known about the vulnerability—hopefully with some mitigation instructions—as soon
as possible even if a patch is not yet available. From the vendor’s standpoint, acknowledging that
you’re already aware of the vulnerability and are working on a fix can help restore users’ confi-
dence in your product and the process that produced it.

6.7 Relationships that Go Sideways

We’ll repeat it again here because it’s so important: the participants in CVD are humans. They
have feelings, and those feelings can get hurt. People get frustrated, angry, and sometimes just
have bad days. The first thing to do when things appear to be going awry in a CVD case is to give
people some slack to make mistakes.

The more transparent your process is—and the closer it is to what other folks are doing—the bet-
ter you will be able to avoid problems. Good documentation is a start, but documenting a byzan-
tine process isn’t as useful as simplifying the process and then documenting that!

6.8 Hype, Marketing, and Unwanted Attention

In the past few years we’ve witnessed the rise of branded vulnerabilities: Heartbleed [89], Bad-
lock [115], Shell Shock [116], and GHOST [117]. Does having a marketing department behind a
vulnerability disclosure make that vulnerability worse than others without the marketing push?
Not in any technical sense, no. Instead, what it does is draw additional attention to the vulnerabil-
ity—so vendors can be forced to adjust the priority of the vulnerability cases they’re working on
and allocate resources toward addressing whatever vulnerability is getting the hype. Are branded
vulnerabilities good or bad for internet security? The only good answer is the lesson of the Taoist
parable of the farmer and the horse: “Maybe.” [118].

6.8.1 The Streisand Effect

Attempts to squash true information once it’s been revealed tends not only to spread the infor-
mation more widely, but also to backfire on whoever is trying to conceal it. The name comes from
a case involving the removal of online photos of a famous celebrity’s house [119]. The attempt to
suppress the photos only drew attention to them resulting in many more people seeing them than
would have otherwise.

This scenario comes up from time to time in CVD cases. Often it takes the form of a vendor try-
ing to suppress the publication of a report about a vulnerability in its product, with some threat of
legal action if the information is released. As we’ve discussed previously, the knowledge that a
vulnerability exists in some feature of a product can be sufficient for a knowledgeable individual
to rediscover the vulnerability. The legal threats usually serve to amplify the discussion of the
case within the security community, which draws more attention to the vendor and its products at
the same time it demotivates reporters’ willingness to participate in the CVD process. Even more

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

problematic is that when such attention comes to focus on the vendors’ products, it is very likely
that additional vulnerabilities will be found—while simultaneously less likely that anyone will
bother to report them to the vendor before disclosing them publicly. Vendors should not underes-
timate spite as a motivation for vulnerability discovery.

6.9 What to Do When Things Go Wrong

While we can’t tell you what to do in every possible combination of contingencies that may arise
in the CVD process, we can suggest the following guidelines to help you navigate the complexity.

6.9.1 Keep Calm and Carry On

Although problems with the disclosure process can be stressful, it’s better to keep emotions in
check while resolving issues. Recall from Section 2.2 that a presumption of benevolence is help-
ful when navigating the CVD process. As we have described thus far in Section 6, multiple things
can go wrong in the disclosure process, but often these problems do not arise as a result of inten-
tional acts of malice. So even if something has gone wrong, it’s still good to give the benefit of
the doubt to the good intentions of the involved stakeholders.

6.9.2 Avoid Legal Entanglements

Whatever the issue is in the context of a vulnerability disclosure, lawyers alone are rarely the right
answer. Cease-and-desist letters tend to backfire as described in Section 6.8.1. Responding with
legal threats can have negative public relations effects in the long term for vendors as well:

• It gives the appearance that the vendor is more concerned about protecting its image than us-
ers’ security.

• It can give the impression that the organization is bullying an individual.
• It can drive future researchers away from reporting the vulnerabilities they find.

6.9.3 Recognize the Helpers

For vendors: A person who shows up at your door to tell you about a vulnerability in your product
is not the enemy. That person is your friend.

For researchers: A vendor who is responsive is doing better than many.

For all parties involved in CVD: Give credit where it’s due. Many participants in CVD are there
because they care about making things better (see Table 1: I Am the Cavalry’s Finder / Reporter
Motivations). Recognizing them for their good work keeps them engaged and helps everybody in
the long run.

6.9.4 Consider Publishing Early

Recall that the goal of CVD is to help users make more informed decisions about actions they can
take to secure their systems. Sometimes it becomes obvious that the coordination of a disclosure
has failed. In these cases, it may make more sense to publish earlier than expected than to con-
tinue to withhold information from those who could use it to defend their systems.

See also Sections 6.4, 6.5, and 6.6.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6.9.5 Engage a Third-Party Coordinator

We have outlined a variety of ways in which the CVD process might not go as smoothly as you’d
like, whether you are a finder, reporter, vendor, coordinator, or deployer. When problems arise
that you’re not prepared to handle, or even if you just need a quick opinion on what to do next,
there are a number of coordinating organizations available to help. These include the following:

• CERT/CC
• national CSIRTs that handle CVD cases

− JPCERT/CC
− NCSC-FI
− NCSC-NL

• larger vendors (Google, Microsoft, etc.)
• bug bounty operators (BugCrowd, HackerOne, etc.)

6.9.6 Learn from the Experience

Any process worth doing more than once is one worth improving. To that end, we recommend
that participants in CVD take good notes. Hold a retrospective to identify things that went well,
things that didn’t, and explore changes you can make to your process for next time. This very doc-
ument is in large part the result of notes taken during “lessons learned” sessions with vulnerability
coordinators at the CERT/CC.

As an example of questions to begin a retrospective discussion, consider this list derived from the
Scrum Alliance [120]:

• What went well?
• What went wrong?
• What could we do differently to improve?

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

7 Operational Considerations

There was a time when nails were high-tech. There was a time when people had to be told
how to use a telephone. Technology is just a tool. People use tools to improve their lives.

– Tom Clancy

Participating in a CVD process over time requires a set of tools and practices in order to be suc-
cessful. In this chapter, we outline a few tools of the trade, and consider common operational se-
curity and personnel management issues.

7.1 Tools of the Trade

An organization’s capabilities are supported by people, process, and tools, and CVD is no differ-
ent. This section covers some commonly used tools.

7.1.1 Secure Communication Channels

Secure communications can be nuanced to maintain in operation, so we first turn our attention to
establishing and maintaining this capability.

7.1.1.1 Email

Email is a simple, tried-and-true method of communication over the Internet. Simply because eve-
ryone has access to it, email is likely to remain a common way of receiving vulnerability reports
and communications.

Because of the potential for organizational changes like employee promotions and turnover, hav-
ing an individual’s email address as a security point of contact is generally discouraged. A better
solution is to establish an email account specifically for vulnerability reports and CVD activity.
Many vendors choose to reserve an email address like <security@example.com> or <psirt@ex-
ample.com> for this purpose. RFC2350 [86] suggests you include contact information as part of
your overall CSIRT disclosure policy and process publication. Additionally, we recommend that
this information be listed clearly under the Contact Us page or a similar page on your organiza-
tion’s website. Ideally, an Internet search for “<vendor> report vulnerability” should lead to that
contact information.

The security email account should be an alias that is forwarded to or shared by one or more peo-
ple. This way, multiple team members can check the incoming mail and cover for each other
when team members are out of the office. Even if the security team is only one person, having an
alias makes it easier to adapt should that person leave the organization; to the outside world, no
contact information needs to change.

Although receiving information via email is convenient, it is not a very good mechanism for
tracking multiple cases at once. Rather than sending security emails to individual mailboxes, ven-
dors, coordinators, and even large-scale reporters should consider setting up a web-based case

mailto:security@example.com
mailto:psirt@ex-ample.com
mailto:psirt@ex-ample.com

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

tracking system instead. That way, received emails can automatically generate new cases or aug-
ment existing ones, which can then be assigned to team members and tracked as necessary. More
on this topic can be found in Section 7.1.4.

7.1.1.2 Secure Email

Email by itself is not a secure medium. We recommend that emails containing sensitive infor-
mation be encrypted [121]. This includes emails containing information about unpatched or other-
wise sensitive vulnerabilities. The most common tools for email encryption are Pretty Good Pri-
vacy (PGP) [122] or Gnu Privacy Guard (GPG) [123], and Secure/Multipurpose Internet Mail
Extensions (S/MIME) using X.509 certificates [124]. By far, PGP/GPG is the most commonly
used by CVD participants. It has a learning curve but is relatively easy to use and maintain once
set up. A number of tools exist to make working with PGP/GPG easier. In practice, very few indi-
viduals and organizations make use of S/MIME & X.509 for their CVD process; while you may
offer S/MIME & X.509 as an option, PGP/GPG is recommended as the default.

The greatest difficulty with PGP/GPG (and really, any email encryption scheme) is encryption
key management. Key management will be discussed in Section 7.2.1.

7.1.1.3 Web Forms and Portals

Most vulnerability reports have a similar structure, making a web form a preferable method for
receiving vulnerability reports for many organizations. To secure your web form, you will need to
enable HTTPS and TLS, and obtain a TLS certificate from a Certificate Authority (CA). A free
option is Let’s Encrypt, maintained by the Internet Security Research Group (ISRG) [125].

TLS ensures that the transmission is secure, but does not authenticate who sent the report. If this
is a requirement, you may also need to implement login accounts on your web form with adequate
authentication mechanisms such as two-factor or X.509 certificates. However, this setup increases
the complexity for reporters to provide information to you, and as a result is rare in practice and
likely unnecessary. Once set up, an HTTPS web form provides an easy-to-use way for reporters to
contact you with vulnerability reports and other information.

However, a problem does come up: how do you acknowledge receipt of the report? Possibilities
include the following:

• Echoing back the message in a confirmation email. The reporter knows you received the
text, but now the text was sent in plain text email for everyone to read. It is unlikely you
want to do this.

• Send a brief thank you message, but without details. The reporter can now be assured that the
report was received. But what if you have a follow up question for the reporter? It’s likely
you will need to send an email, which will require encryption to keep the details of the ques-
tion and answer secure.

• Send a brief thank you message, and ask the reporter to log in to a portal to view the mes-
sage conversation. This resolves the issue of two-way secure communications, but now you
need to establish a public-facing portal and manage portal credentials. This raises additional
operational considerations, for example those below:
− user account management and password changes

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

− two-factor authentication or X.509 as possible requirement to ensure user identity
Portal credential maintenance introduces more complications, and for many vendors is likely
not worth the effort. Another disadvantage of using a portal is that vendors and organizations
may be unwilling to create accounts on another vendor’s portal. This may discourage multi-
party communication and coordination, effectively preventing a vendor or reporter from par-
ticipating in multi-party CVD.

In the CERT/CC’s experience, PGP/GPG encrypted email is the most common solution for a pri-
mary contact channel; HTTPS websites or third-party platforms can complement but may not al-
ways be sufficient to replace email for your organization’s CVD needs.

7.1.2 Contact Management

For most reporters, the contact management process simply consists of maintaining a vendor’s
email address and PGP/GPG key in compatible mail client software. Contact management be-
comes vitally important to multiparty CVD, and is a particular concern for third-party coordina-
tors. A common choice is Thunderbird with Enigmail [126], but other open source solutions such
as Outlook with gpg4win [127], or KMail with KGpg/Kleopatra [128] and proprietary solutions
such as Outlook with Symantec Encryption Desktop [122] also exist.

Finding vendor contacts can be difficult. Not all vendors include contact information in an easily
searchable page, such as a Contact Us page linked from the vendor’s homepage. Some alterna-
tives include searching old mailing lists, using social media, or even sending physical letters to a
business address [129].

In order to protect privacy during the disclosure process, mailing lists or simply carbon-copying
all recipients to a single message is likely not an acceptable action in most scenarios. Vendors in
many cases would like to keep their vulnerability information private except for what is specifi-
cally intended to be shared. At the CERT/CC, we have developed some in-house mailing scripts
that auto-generate individual encrypted emails, one for each vendor we attempt to reach. In this
way, we can maintain privacy up front, but can introduce two vendors should there be mutual in-
terest in collaboration. Our current tools were written with our internal systems and network poli-
cies in mind. Other coordinators may look into similar efforts. We covered communication topol-
ogies for CVD in Section 5.5.2.

7.1.3 Bug Bounty Platforms

A number of third-party CVD platforms now exist to facilitate communication between vendors
and reporters [52] [53] [54] [55]. Although they are often referred to as bug bounty platforms, of-
ten the “bounty” aspect is in fact optional—vendors can use bug bounty platforms to receive re-
ports without needing to compensate reporters unless they choose to do so.

CVD platforms provide a secure communications channel (HTTPS) for reporters to communicate
with vendors. These platforms generally allow two-way communications, making it easy for on-
going discussion between vendor and reporter. This channel is usually hosted by a third party in a
software-as-a-service model, which may be important to some organizations that are not able to
maintain their own infrastructure due to resource constraints. Of course, having vulnerability in-

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

formation hosted on third-party infrastructure may also present a data privacy risk to some organi-
zations, so it is important to consult internal policies before determining if a CVD platform fits
your organization’s needs and requirements.

An important note regarding these platforms is that the CVD platform by its nature requires a
login. As explained in our discussion in the last section, requiring an account may discourage
some reporters or other organizations from joining the platform, locking them out of discussion.
Organizations should consider whether the benefits of using a CVD service outweigh this con-
cern.

7.1.4 Case and Bug Tracking

Case tracking systems such as bug trackers or trouble ticket systems are often used by vendors,
coordinators, and reporters for tracking vulnerability reports. Such systems can centralize the vul-
nerability response process and provide the ability to track individual cases. Case tracking sys-
tems also provide a means of collecting data about recurring security issues and the performance
of the response process itself.

We have found it important to distinguish that vulnerability reports are not always bug reports. A
single vulnerability report might contain information on more than one bug; alternately, it may de-
scribe a configuration issue that would not typically be considered a bug in the first place. In gen-
eral, vulnerability reports and bug reports should be thought of as having a many-to-many rela-
tionship, allowing one or more vulnerability reports to be linked to one or more bug reports.

That said, bug tracking systems can still be useful for vulnerability report tracking if this distinc-
tion is kept in mind, and the bug tracking system has the appropriate capabilities. At the
CERT/CC, we’ve found that more complicated CVD cases—for example the multiparty cases de-
scribed in Section 5.4—become more like projects than tickets.

7.1.5 Code and System Inventories

As we discussed in Section 5.4.2, software-based products are typically assembled from compo-
nents rather than written from scratch. Economies of scale apply to code, and most organizations
would consider it wasteful to write a feature from scratch when that feature is available at a rea-
sonable licensing cost for inclusion into their own products. As a result, each product is not
merely the result of a single vendor’s development process, but of an entire supply chain. Librar-
ies get included in other libraries, which form subcomponents in the composition of larger and
more complex products.

For product vendors, an important part of the vulnerability response process is knowing what
weaknesses your products might have. You can address this by clearly identifying any third-party
libraries or utilities that are included with your products, and being alert and responsive to vulner-
ability disclosures in any third-party products that may affect your own products.

In recent years, a class of Software Composition Analysis tools (such as those offered by
WhiteSource Software [130], Black Duck Software [131], Sonatype [132], Synopsys [133], Flex-
era Software [134], and the like) have come into use to identify potential licensing conflicts in

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

commercial and open source products. Many of these tools are potentially useful to vendors look-
ing to create an inventory of libraries and third-party components used in their products for secu-
rity analysis purposes as well.

As a vendor, identifying your products’ third-party dependencies is only the first step. After that,
you should take steps to ensure that your vulnerability response capability maintains awareness of
any security-related announcements about those upstream products on which your product de-
pends. Some component vendors offer special communication channels (e.g., a mailing list) for
their licensees. If you’ve worked with a coordinator like the CERT/CC in the past, ask if you can
be placed in a special notification list for a particular library or product.

Furthermore, since it is likely that your products will in turn be used as components in some other
vendors’ solution, it can be a good practice to provide an inventory of components along with
your product. A number of data formats and specifications have emerged in the software supply
chain management space and are in use by product vendors already. These include the following:

• Software Identification (SWID) Tags [135]
• Common Platform Enumeration (CPE) [136]
• The Software Package Data Exchange (SPDX) [137]

7.1.6 Test Bench and Virtualization

Having an internal testing infrastructure is vital to proper triage and resolution of vulnerability re-
ports as we discussed in Section 4.3.1. Not only is testing useful for confirming reports, or repro-
ducing and isolating bugs; it can also serve as a platform for an organization to develop its own
vulnerability discovery capability. The analysts responsible for confirming incoming reports will
over time develop a familiarity with the ways in which a product is vulnerable, and, given appro-
priate training and support, can begin to apply this knowledge directly to the product without hav-
ing to wait for vulnerability reports to arrive from elsewhere. We have followed this exact path at
the CERT/CC: tools such as Dranzer [138] and BFF [139] came directly out of vulnerability ana-
lysts applying broad knowledge of vulnerabilities gained from detailed analysis of reports toward
the development of automated discovery processes.

By far the easiest way to build a vulnerability testing infrastructure is the use of virtualization
technologies. Many different virtual machine environments can be built for receivers of vulnera-
bility reports to verify or clarify the reports they receive. At the CERT/CC, we maintain a fire-
walled testing network in which virtual machines can be placed for testing. We also maintain a
few permanent pre-configured servers on this network (HTTP web servers, etc.) to allow easy
testing of certain classes of vulnerabilities, such as “drive-by” browser downloads. Much of this
infrastructure could be replicated entirely in a virtual network within a single machine, or in a
cloud-based environment if desired.

Be sure your analysts have proper access to any necessary software needed for testing. This in-
cludes maintaining appropriate software licenses for proprietary software, although in many cases
free and/or open source alternatives are available. Toolkits often include the following:

• virtualization platform, often a need to support multiple operating systems
• debuggers

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• source code analysis tools
• binary analysis tools (decompilers, etc.)
• network sniffing tools
• hex editors
• text editors
• visualization (often built into other tools)

Vendors with more hardware-centric products may need to additionally maintain more physical
gear or specialized test bench equipment in order to have sufficient capacity to confirm reports.

7.2 Operational Security

Operational security, often shortened to “opsec,” is an important part of CVD operations. Opsec
includes your ability to maintain security and confidentiality for information associated with vul-
nerability reports prior to disclosure.

7.2.1 PGP/GPG Key Management

Separate from the issue of maintaining encryption keys for your contacts, you must also maintain
your own individual or organizational encryption key.

PGP/GPG is a form of asymmetric encryption that makes use of two different encryption keys
called your public key and your private key. The public key is intended to be shared; you advertise
your public key, and individuals or organizations wishing to contact you use your public key to
encrypt a message. Messages encrypted to your public key can only be decrypted by the private
key; therefore, it is important that your private key stays private, and that no one outside of your
team or organization has access to this key.

A general discussion on encryption algorithms is beyond the scope of this report, but at the time
of this writing, it is recommended to generate RSA keys with a length of at least 4096 bits to en-
sure security into the near-to-moderate-term future.

7.2.1.1 Use a Passphrase and Control Access

We recommend setting a strong passphrase on any key. Without a passphrase, anyone who ob-
tains the key file can immediately use the key to sign messages or decrypt messages; if the private
key is leaked to unauthorized users but a passphrase was applied, then the user would need to also
know the passphrase before any damage could be done.

Of course, a persistent attacker could attempt to brute force the phrase, so ideally the private key
should be kept somewhere safe, out of the hands of any unauthorized users. In other words, only
members of the CVD team should know the passphrase or even have access to the key file. Ide-
ally, if your CVD capability includes a dedicated communications team, restrict knowledge of the
passphrase and access to the key material only to those members directly involved with communi-
cations. At the CERT/CC, we have implemented this by having dedicated systems for CVD com-
munications work; private keys are only accessible from these systems. In this setup, users must
specifically request access and can be allowed or denied based on need.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

7.2.1.2 Use Revocation Certificates and Key Rotation

A concern is that the private key may land into unauthorized hands. This might occur in the event
of a network breach, but another possibility is a disgruntled former employee retaining a copy of
the key. Because of these possibilities, organizations using shared key material should generate a
revocation certificate for their PGP/GPG key and store it somewhere safe. Obviously, it is im-
portant to restrict access to the passphrase and revocation certificate; typically, it should only be
accessible by management. Should any emergency or security event occur, you can publish the
revocation certificate to notify the public to not trust this key anymore. When a user imports your
revocation certificate, it marks the associated PGP/GPG key as unusable and untrustworthy.

To further mitigate these concerns, we recommended that you rotate encryption keys (i.e., gener-
ate a new one) regularly. Some teams choose to use the same key for two, three, or more years
without change. This recommendation arises to address concerns regarding the threat of network
breaches and the potential impact of losing control of the private key. At the CERT/CC, we gener-
ate a new PGP/GPG key yearly.

Another reason to rotate keys is to revoke access to future encrypted email when analysts leave
the CVD team. The best way to do this is to generate a new key whenever there are personnel
changes; in this way, future messages will be encrypted to the new key with a new passphrase,
and any former team members will be unable to access these messages even if they still have ac-
cess to the old key.

Regardless of how often you generate a new PGP key, your latest PGP public key needs to be
available to individuals and organizations so that they may contact you. Be sure your key genera-
tion process includes necessary steps to put your PGP public key in the public’s hands. This can
consist of posting your PGP public key directly to your organization website, or pushing your key
to one of many PGP public key servers. You can use these same mechanisms to distribute your
revocation certificate should the need arise.

7.2.1.3 Practical Tips for Key Management

We wrap up this discussion with a review of recommended practices for PGP/GPG key manage-
ment:

• Generate an RSA key of at least 4096 bits.
• Restrict access to the private key material.
• Use a strong passphrase on the key.
• Restrict knowledge of the key passphrase to only those members of the CVD team involved

in communications.
• Generate a revocation certificate for each key.
• Store the key passphrase and a revocation certificate in a safe location, such as a locked cabi-

net or safe in a secured area of the organization.
• Generate a new key whenever a member leaves the CVD team, and revoke the old key.
• Generate a new key periodically, regardless of other factors.
• Make your latest public key available in a known location to ensure recipients always have

access to the latest key.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 65
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

7.2.2 Handling Sensitive Data

Some of the information that passes through a CVD process may include information on an or-
ganization’s internal processes, trade secrets, or even national security interests in some scenarios.
Proper precautions need to be established. It is recommended that recipients treat all received data
as private unless explicitly given permission to share.

Of course, there is some ambiguity when you say private: does that mean the information is for
the whole organization? Just the CVD team? Possibly even a single analyst? In general, vulnera-
bility information should be shared with the fewest number of people possible to effectively coor-
dinate and remediate a vulnerability prior to disclosure. Clearly declaring the data’s sensitivity
can help to make that determination.

7.2.2.1 Traffic Light Protocol (TLP)

The Traffic Light Protocol (TLP) has been adopted for a standards-track by FIRST [140]. By
marking a document with a TLP level—Red, Amber, Green, or White—a sender can easily com-
municate the sensitivity of vulnerability information and expectations about sharing it further.

In the context of CVD, the following applies:

• TLP:GREEN and TLP:AMBER are best suited for information shared between reporters,
vendors, and coordinators during phases prior to public announcement of a vulnerability.

• If pre-publication announcements are made to deployers or other stakeholders, TLP:RED or
TLP:AMBER could be a good fit.

• TLP:WHITE is most useful for public disclosures.

See Appendix B for more on TLP.

7.2.3 Don’t Automatically Trust Reports

There are two reasons that organizations receiving vulnerability reports should maintain a degree
of wariness regarding the reports they receive. The first is intentional misdirection of your CVD
capability, which we already discussed in Section 4.3.1.1. The second is subtler, in that the tech-
nical infrastructure you deploy to manage CVD cases can potentially be affected by the vulnera-
bilities you are coordinating.

Vulnerability reports may contain hostile attachments—not necessarily as an attack, but simply a
reporter sending a proof-of-concept for your review—so vendors and coordinators should design
their report tracking systems and process accordingly. Be sure attachments to vulnerability reports
are not opened automatically anywhere along the process. You might also institute a policy that
such attachments are only to be opened within an isolated testing environment, not on production
systems.

CVD participants should keep in mind that their case tracking and email systems themselves pre-
sent attack surface and may be affected by the very vulnerabilities they are designed to coordinate.
We have witnessed reports containing examples of image parsing vulnerabilities causing prob-
lems for both webmail and ticketing systems that automatically generate thumbnail previews of

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

image attachments. Vendors and coordinators concerned about such risks should consider the de-
gree to which their CVD support infrastructure is integrated with normal business operations sys-
tems. In some scenarios, maintaining parallel infrastructure may be preferable.

7.3 CVD Staffing Considerations

Vulnerability analysis and response may require networking and forensics skills for certain clas-
ses of vulnerabilities, but often also requires some mix of the following skills:

• programming skills, especially in common languages (C, C++, Python, Java)
• reverse engineering and debugging
• knowledge of low-level operating system features for Windows, Mac and/or Linux
• hardware architecture and basic electrical engineering
• software security testing
• virtualization and some infrastructure automation
• written communications
• customer-service mindset

In most organizations, these skills will likely be dispersed among a team of people rather than ex-
pecting a single person to be fluent with all of these topics.

7.3.1 Beware Analyst Burnout

Some organizations may have a small enough flow of incoming vulnerability reports that all the
CVD-related roles can be fulfilled by a single team, or even a single person. Other organizations
might choose to split the technical analysis roles apart from the more human-oriented communica-
tion and coordination roles. No matter the arrangements, it is important that vendors and coordi-
nators establishing a CVD capability mitigate the potential for analyst burnout.

Burnout of security analysts is well-documented phenomenon [141] [142] [143]. Analysts work-
ing full-time in a CVD process are at risk of this too. A vendor’s CVD capability may receive a
large amount of incoming reports each week, especially at larger vendors. This can result in CVD
staff becoming stressed and having low job satisfaction, leading to lower quality of work and ulti-
mately employee attrition. The costs of lower quality work (e.g., missing an important report),
employee turnover (e.g., hiring and training a new analyst), and associated damage to the ven-
dor’s reputation suggest that this problem should be addressed ahead of time with reasonable pre-
cautions.

At the CERT/CC, we have attempted to mitigate this issue with reasonable success by implement-
ing the suggestions below. Research has shown that many of these are effective responses to com-
monly-held morale problems [143].

• Staying well-staffed and rotating responsibility. Organizations may choose to have several
team members, trained in the CVD process and tools, who can temporarily assist should a
regular CVD analyst be unavailable for any reason, even if these additional team members
do not typically do CVD day-to-day. Of course, handing off reports between temporary and
full-time analysts leads to other operational concerns as previously discussed, so this must be

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

done carefully. Organizations must also take care that these temporary team members are not
pulled away from their own work so often that they themselves experience burnout.
A related possibility shared with us by a vendor is the possibility of work rotation, whereby
team members are rotated in and out of CVD roles; rather than temporary, the rotation is per-
manent among a larger group of team members. An example would be an analyst spending
one week in a CVD role, followed by two to three weeks on a different project or role. The
same concerns in our above discussion would apply; organizations must be careful to bal-
ance time in and out of CVD roles in order to maximize the effectiveness of the rotation.

• Allowing analyst independence. Generally, you should trust your analysts to make good de-
cisions during the report triage process, and empower them to make CVD decisions. Allow-
ing analyst autonomy with management’s specific blessing provides relief to analysts at-
tempting to prioritize reports. Many reports will be incomplete, inaccurate, unimportant, or
not actionable; allowing analysts to make the judgment on which reports deserve priority and
which should be closed may help reduce work-related stress.

• Allotting professional development time. Analysts schedule some time each week to focus on
professional development or projects. During these times, the analyst is not expected to per-
form CVD duties. Providing this time in whole-day chunks is preferable to spreading it out
across the week. It is also important that during these days the analyst not be disturbed; ur-
gent tasks should be handled by other on-duty analysts as much as possible. This suggestion
may be combined with work rotation to allow for regular project work outside of the scope
of CVD.

• Seeking out automation. We have encouraged analysts to document procedures and pro-
cesses that need updating or could even be automated. Prototypes can be implemented and
rolled out to decrease the cognitive workload of analysts. Processes and tools should be re-
viewed regularly to ensure they are aiding the analyst, rather than fighting the analyst.

Due to the possibility of burnout and the associated costs, the CERT/CC recommends that CVD
capability be established within a well-resourced team or teams specifically created for this task,
rather than concentrating the responsibilities to a small team, or even a single person. Our sugges-
tions above may be helpful to combat analyst burnout, but do not form an exhaustive list of possi-
ble actions.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 68
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8 Open Problems in CVD

Sometimes it seems as if there are more solutions than problems. On closer scrutiny, it turns
out that many of today’s problems are a result of yesterday’s solutions.

-Thomas Sowell

Although we have attempted to describe CVD as thoroughly as we can, there are a number of
open problems in CVD. In this chapter, we cover two major topic areas that the CERT/CC has
been working on in recent years. First, we discuss the increasing difficulty in identifying vulnera-
bilities. Second, we’ll cover the changes that IoT implies to CVD now and for the foreseeable fu-
ture.

8.1 Vulnerability IDs and DBs

The units of work in CVD are vulnerability reports or cases. However, a single case may actually
address multiple vulnerabilities. Teasing out how many problems are involved in a report can be
tricky at times. The implications of this in terms of the CVD process and the compilation of vul-
nerability databases is significant. This section is adapted from a CERT/CC blog post by House-
holder [144].

8.1.1 On the Complexities of Vulnerability Identity

Vulnerability identifiers can serve multiple purposes. They may be used to identify the following:

• a vulnerability report or case
• a document or database entry that describes a vulnerability (e.g., CERT Vulnerability Notes

[15])
• the specific flaw that such a document or report describes [14]

Now this isn’t really a problem as long as one case describes one vulnerability and that case re-
sults in the creation of one document. But that’s not always the case, for a number of reasons, in-
cluding those below:

• Different processes use different abstractions to define what “unit vulnerability” is. For ex-
ample, CVE has specific guidance on counting rules [84].

• It’s rare for vendors to release single-issue patches. More often they prefer to roll up multiple
fixes into a single release, and then publish a document about the release [145].

• In the case of independent discovery, or at least duplicate reporting, multiple cases may be
opened describing the same vulnerability. In some instances, this fact may not become obvi-
ous until considerable effort has been put into isolating the bugs in each report. For example,
a single vulnerability can manifest in different ways depending on how it’s triggered. The
connection might only be discovered on root cause analysis.

• Automated testing such as fuzzing can lead to rapid discovery of very large numbers of
unique failure cases that are difficult to resolve into specific bugs.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 69
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

• Automated testing can also identify so many individual vulnerabilities that human-oriented
case handling processes cannot scale to treat each one individually. Here’s an extreme exam-
ple of this phenomenon: although the CERT/CC published only a single Vulnerability Note
for Android apps that failed to validate SSL certificates, in the end it covered 23,667 vulner-
able apps [92] [93]. Should each get its own identifier? Yes, and we did assign individual
VU# identifiers to each vulnerable app. But this highlights the distinction between the vul-
nerability and the document that describes it.

As of this writing, work is underway within the Vulnerability Report Data Exchange special inter-
est group (VRDX-SIG) within FIRST [146] on a vulnerability report cross-reference data model
that will allow for the expression of relationships between vulnerability reports. The current work
in progress can be found at https://github.com/FIRSTdotorg/vrdx-sig-vxref-wip.

In order to make it easier to relate vulnerability reports and records to each other, the VRDX work
represents the following concepts: “possibly related,” “related,” “not equal,” “equal,” “superset,”
“subset,” and “overlap.”

8.1.2 What CVE Isn’t

Because of the prevalence and popular use of CVE IDs in the vulnerability response space, many
people assume that vulnerability identity is synonymous with Common Vulnerabilities and Expo-
sures (CVE) [14]. However, let’s briefly look at some ways in which that assumption is inaccu-
rate:

• CVE has limited scope of coverage.
• Not all known vulnerabilities are assigned a CVE ID.
• Not all vulnerabilities assigned a CVE ID have a corresponding record in the CVE database.

8.1.3 Every Vulnerability Database Makes Choices

As the CERT/CC’s vulnerability analysis efforts have expanded into vulnerability coordination
for non-traditional computing products (mobile, vehicles, medical devices, IoT, etc.) [147], we’ve
also begun to hit up against another set of issues affecting vulnerability identities and compatibil-
ity across vulnerability databases (VDBs): namely, bias.

Steve Christey Coley and Brian Martin mention a number of biases that affect all VDBs in their
BlackHat 2013 talk [148]:

• Selection bias. Not all products receive equal scrutiny. Not all vul reports are included in
VDBs.

• Publication bias. Not all results get published. Some vuls are found but never reported to
anyone.

• Abstraction bias. This bias is an artifact of the process that VDBs use to assign identifiers to
vulnerabilities. (Is it 1 vul or 3? 23,667 or 1?)

• Measurement bias. This bias encompasses errors in how a vulnerability is analyzed, veri-
fied, and catalogued.

https://github.com/FIRSTdotorg/vrdx-sig-vxref-wip

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 70
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In an ideal scientific world, bias can be factored into analytical results based on the data collected.
But VDBs don’t exist solely in the service of scientific purity. Every vulnerability database or cat-
alog makes choices driven by the business requirements and organizational environments in
which those VDBs operate. These choices include the following:

1. Sources of vulnerability information monitored. Monitoring all the potential sources of
vulnerability information is unrealistic for resource-constrained VDBs; to date we have
found none that are not so constrained. This choice is one source of selection bias.

2. Inclusion and exclusion criteria. Rules that define what subset of records from the sources
monitored will be included (or not) in the VDB must be decided. What kind of vulnerabili-
ties does the VDB track? Is it platform specific? Is it just a single vendor collecting reports in
its own products? Is it focused on a particular business sector? This choice is another source
of selection bias.

3. Content detail. How much (and what kind of) detail goes into each record in a VDB is
something that must be decided: for example, whether to include exploit information, worka-
rounds, detection criteria, and so forth.

4. Abstraction. What is a “unit” vulnerability? Does this report represent one vul or many?
That choice depends on what purpose the VDB serves. Christey and Martin cover this issue
in their list of biases, describing it as “the most prevalent source of problems for analysis.”
CVE has made their abstraction content decision guidance available [149].

5. Uncertainty tolerance. How certain is the information included in the record? Is the goal of
the VDB to be authoritative on first publication? Or can it tolerate being wrong sometimes in
favor of getting things out more quickly?

6. Latency tolerance. How quickly do new records need to be placed in the VDB following
the initial disclosure? This choice is a distinct tradeoff with uncertainty: consider the differ-
ences between breaking news coverage and a history book.

7. Capacity constraints. For a VDB, incoming vulnerability report volume is unconstrained
while the capacity to consume and process those reports into database records is decidedly
not (especially with humans in the loop, and as of this writing they still are).

8. Users and consumers of the data. Ultimately, a VDB must serve some useful purpose to
some audience in order for it to continue to exist. There is a wide variety of uses for the in-
formation contained in VDBs (vulnerability scanning, vulnerability management systems,
long-term trend analysis, academic research, quality improvement efforts, supporting acqui-
sition or purchasing decisions, evaluating vendor process effectiveness, etc.), so it shouldn’t
be surprising that user requirements can drive many of the other choices the VDB operators
have to make.

It’s important to note that even if two vulnerability databases agree on the first four items in the
list above (sources to watch, inclusion criteria, content detail, and abstraction), over time it’s easy
to wind up with completely distinct data sets due to the latter items (uncertainty tolerance, latency
tolerance, capacity constraints, and user needs).

8.1.4 Where We Are vs. Where We Need to Be

The vulnerability databases you are probably most familiar with, such as the National Vulnerabil-
ity Database (NVD) [150], Common Vulnerabilities and Exposures (CVE) [14], and the CERT

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 71
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Vulnerability Notes Database [15] have historically focused on vulnerabilities affecting traditional
computing platforms (Windows, Linux, OS X, and other Unix-derived operating systems) with
only a smattering of coverage for vulnerabilities in other platforms like mobile or embedded sys-
tems, websites, and cloud services.

In the case of websites and cloud services this gap may be acceptable since most such services are
effectively single instances of a large-scale distributed system and therefore only the service pro-
vider needs to apply a fix. In those cases, there might not be a need for a common identifier since
nobody is trying to coordinate efforts across responsible parties. But in the mobile and embedded
spaces, we definitely see the need for identifiers to serve the needs of both disclosure coordination
and patch deployment.

Furthermore, there is a strong English language and English-speaking country bias in the major
U.S.-based VDBs (hopefully this isn’t terribly surprising). China has not one but two major
VDBs: China National Vulnerability Database of Information Security (CNNVD) [151] and
China National Vulnerability Database (CNVD) [152]. We have been working with CSIRTs
around the world (e.g., JPCERT/CC [59] and NCSC-FI [58]) to coordinate vulnerability response
for years and realize the importance of international cooperation and interoperability in vulnera-
bility response.

Given all the above, and in the context of the surging prevalence of bug bounty programs, it
seems likely that in the coming years there will be more, not fewer VDBs around the world than
there are today. We anticipate those VDBs will cover more products, sectors, languages, coun-
tries, and platforms than VDBs have in the past.

Coordinating vulnerability response at local, national, and global scales requires that we have the
means to relate vulnerability reports to each other, regardless of the process that originated them.
Furthermore, whether they are driven by national, commercial, or sector-specific interests, there
will be a need for interoperability across all those coordination processes and the VDBs into
which they feed.

8.1.5 Vulnerability IDs, Fast and Slow

Over time, it has become clear that the days of the “One Vulnerability ID to Rule Them All” are
coming to a close and we need to start planning for that change. As we’ve covered above, one of
the key observations we’ve made has been the growing need for multiple vulnerability identifiers
and databases that serve different audiences, support diverse business practices, and operate at dif-
ferent characteristic rates.

In his book Thinking, Fast and Slow, Daniel Kahneman describes human thought processes in
terms of two distinct systems [153]:

• System 1: Fast, automatic, frequent, emotional, stereotypic, subconscious
• System 2: Slow, effortful, infrequent, logical, calculating, conscious

Making the analogy to CVD processes, notice that historically there has been a need for slower,
consistently high-quality, authoritative vulnerability records, trading off higher latency for lower
noise. Deconfliction of duplicate records happens before an ID record (e.g., a CVE record) is is-
sued, and reconciliation of errors can be difficult. To date, this practice is the ideal for which

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 72
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

many VDBs have strived. Those VDBs remain a valuable resource in the defense of systems and
networks around the globe.

Yet there is a different ideal, just as valid: one in which vulnerability IDs are assigned quickly,
possibly non-authoritatively, and based on reports of variable quality. This process looks more
like “issue, then deconflict.” For this new process to work well, post-hoc reconciliation needs to
become easier.

If you’re familiar with the gitflow process [154] in software development, you might recognize
this distinction as analogous to the one between the develop and master branches of a software
project. The bulk of the work happens in and around the develop branch, and only when things
have settled out does the master branch get updated (and merge conflicts are as inevitable as death
and taxes).

8.1.6 A Path Toward VDB Interoperability

As mentioned in Section 8.1.1 above, the FIRST VRDX-SIG is working on a vulnerability cross-
reference scheme that would allow for widely distributed vulnerability ID assignments and VDBs
to run at whatever rate is necessary, while enabling the ability to reconcile them later once the
dust clears:

• When necessary, the CVD process could operate in System 1 for quick response, and clean
up any resulting confusion afterwards.

• A tactical response-focused VDB might be able to tolerate more uncertainty in trade for
lower latency.

• A VDB with more academic leanings could do a deep-dive analysis on root causes in ex-
change for having fewer records and higher latency.

The main idea was that VDB records can be related to each other in one of the following ways:

• equality and inequality (two records describe the same vulnerability or vulnerabilities, or
they refer to different ones)

• superset and subset (one record is more abstract than the other)
• overlap (related but not fully contained)

This work builds on both prior work at the CERT/CC and Harold Booth and Karen Scarfone’s
October 2013 IETF Draft Vulnerability Data Model [155]. However, while it would be great if we
could get to a unified data model like the IETF draft for vulnerability information exchange even-
tually, for now the simplest thing that could possibly work seemed to be coming up with a way to
relate records within or between vulnerability databases that explicitly addresses the choices and
biases described above. The unified data model might be a longer way off, and we were anticipat-
ing the need to reconcile VDBs much sooner.

8.1.7 Looking Ahead

Everything we have discussed in this section is work in progress, and some things are changing
rapidly on a number of related fronts. Nevertheless, while it’s hard to say how we’ll get there, it

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 73
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

seems inevitable that we’ll eventually reach a point where vulnerability IDs can be issued (and de-
conflicted) at the speed necessary to improve coordinated global vulnerability response while
maintaining our ability to have high-quality, trusted sources of vulnerability information.

Here in the CERT/CC Vulnerability Analysis team, we recognize the need for slower, “correct-
then-issue” vulnerability IDs as well as faster moving “issue-then-correct” IDs. We believe that
there is room for both (and in fact many points in between). Our goal in participating in the
VRDX-SIG is to enable interoperability between any willing VDBs. We intend to continue our
efforts to build a better way forward that suits everyone who shares our interest in seeing that vul-
nerabilities get coordinated and disclosed, and that patches are created and deployed, all with an
eye toward minimizing societal harm in the process.

8.2 IoT and CVD

Next we turn our attention to the implications that the Internet of Things brings to the CVD dis-
cussion.

“Smart things” are expected to outnumber traditional computers in the near future and will likely
surpass mobile phones not long thereafter. IoT will have implications to the protection of privacy,
opportunities for fraud and abuse, and ensuring safety. Every vulnerable thing becomes a potential
point of leverage for an attacker to persist or maneuver laterally through a network. Immature se-
curity on IoT devices can leak information that could allow an attacker to gain a foothold.

Because many such systems and devices are expected to remain operationally useful for years or
even decades with minimal intervention, it is especially important that their security be thor-
oughly understood prior to deployment. This section collects a number of issues we observed in
the course of recent work done by the CERT Vulnerability Analysis team, and is adapted from a
CERT/CC blog post by Householder [156].

8.2.1 Black Boxes

We identified issues such as the inclusion of networked appliances in a larger system where the
appliances provided networked services based on sensor data. Enterprise security policy treated
the device as a black box rather than a general-purpose computer with regard to patch levels, in-
cluded software, and so forth. The attack vector posed by the sensor data interface had not been
considered either.

8.2.2 Unrecognized Subcomponents

In a number of projects, we observed that while many systems were composed of highly specified
off-the-shelf and custom components, the vendors providing those systems often could not iden-
tify the third-party subcomponents present in the delivered codebase. The problem can be as sim-
ple as not identifying statically linked libraries or as complicated as dealing with complex supply
chains for code components.

8.2.3 Long-Lived and Hard-to-Patch

We observed various devices with wireless data capabilities embedded within a larger system yet
little or no ability to patch the fielded systems except within very sparse service windows. In-
stances where physical contact with the device is required in order to update it can be especially

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 74
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

problematic once vulnerabilities are discovered. (See Dan Geer’s talk at the Security of Things
Forum for more on the “long-lived and not reachable” problem [157].)

8.2.4 New Interfaces Bring New Threats

We also encountered smart grid devices built out of a traditional electrical component coupled to
an embedded Linux system to provide networked services. In a deployment context, the device
was treated as an appliance. However, the impact of potential vulnerabilities in the general-pur-
pose operating system embedded in the device had not been fully addressed.

8.2.5 Summarizing the IoT’s Impact on CVD

We anticipate that many of the current gaps in security analysis tools and knowledge will begin to
close over the next few years. However, it may be some time before we can fully understand how
the systems already available today, let alone tomorrow, will impact the security of the networks
onto which they are placed. The scope of the problem does not appear to contract any time soon.

We already live in a world where mobile devices outnumber traditional computers, and IoT stand
to dwarf mobile computing in terms of the sheer number of devices within the next few years. As
vulnerability discovery tools and techniques evolve into this space, so must our tools and pro-
cesses for coordination and disclosure. Assumptions built into the CVD process about disclosure
timing, coordination channels, development cycles, scanning, patching, and so on, will need to be
reevaluated in the light of hardware-based systems that are likely to dominate the future internet.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 75
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

9 Conclusion

When I was a boy and I would see scary things in the news, my mother would say to me,
‘Look for the helpers. You will always find people who are helping.’

– Mister Rogers

The scope of the citizenry affected by cybersecurity vulnerabilities has widened considerably in
recent years. In the past, one might have argued that only computer users were affected by vulner-
abilities and their disclosure: this is no longer the case. Affected users now include those who
have smartphones, watch smart TVs, use credit cards or ATMs for banking and/or shopping, drive
cars, fly in airplanes, go to the hospital for diagnostic imaging or intravenous medicine, live in
houses with smart meters, and so forth. The list goes on to include nearly everyone, and “opting
out” is not a viable position for most people to take.

In an ideal world, software would do exactly what we expect it to do, and nothing we don’t want
it to do.

In an ideal world, vendors would be receptive to finding out about vulnerabilities in their prod-
ucts, and would recognize the service provided to them by those who find and report problems.
They would be motivated to place user safety, privacy, and security at the top of their priorities.

In an ideal world, human communications would be clear to all parties involved. Well-meaning
parties would never misunderstand or misinterpret each other’s words or intentions. People would
always be polite, patient, humble, calm, without guile, and willing to put aside their own interests
for those of others.

We do not live in an ideal world.

In the world we find ourselves occupying, software-based systems exhibit complex behaviors, in-
creasingly exceeding the limits of human comprehension [158]. As a society, we have become ca-
pable of building things we don’t fully understand. The difference between what a thing does and
what you expect it to do can lead to uncertainty, confusion, fear, and vulnerability.

But it’s not just the technology that falls short of our ideals. It should come as no surprise that hu-
mans have diverse emotions and motives. Values differ. Feelings get hurt, people get frustrated.
Words are misinterpreted. Incentives promote individual choices that conflict with each other.
What’s good for the individual is sometimes bad for the collective, and vice-versa.

And so, we’re left to muddle through. To confront each day as an opportunity to learn, another
chance to improve, and make tomorrow start a little better than yesterday ended. We scan the
horizon to reduce surprise. We test for flaws, we probe for weaknesses, and we identify recurring
patterns and themes that lead to undesired outcomes. We fix what we can, mitigate what we can’t
fix, and remain vigilant over what we can’t mitigate. We coordinate vulnerability disclosure be-
cause we realize we’re all in this together.

Thanks for reading.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 76
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix A – On the Internet of Things and Vulnerability
Analysis

This appendix is adapted from two CERT/CC Blog Posts [159] [156].

IoT Vulnerability Discovery

In 2014 CERT performed a study of vulnerability discovery techniques for IoT systems. As we
reviewed the literature, we found a number of techniques in common use. Here they are, ranked in
approximately descending order of popularity in the research we surveyed:

1. Reading documentation: This includes product data sheets, protocol specifications, Internet
Drafts and RFCs, manufacturer documentation and specs, patents, hardware documentation,
support sites, bug trackers, discussion forums, FCC filings, developer documentation, and
related information.

2. Reverse engineering: In most cases, this consists of reverse engineering (RE) binary firm-
ware or other software to understand its function. However, there are instances in which
merely understanding a proprietary file format is sufficient to direct further analyses. Hard-
ware RE appears in some research, but has not been as prevalent as RE of software or file
formats. As security researchers develop more hardware knowledge and skills (or as individ-
uals with those skills become security researchers) we expect the prevalence of hardware RE
to increase in the security literature.

3. Protocol analysis: Understanding the communication protocols used by a system is vital to
identifying remotely exploitable vulnerabilities. This technique can take the form of simply
sniffing traffic to find mistrusted input or channels, or reverse engineering a proprietary pro-
tocol enough to build a fuzzer for it. Decoding both the syntax and semantics can be im-
portant. In wireless systems, this technique can also take the form of using a software de-
fined radio (SDR) to perform signal analysis, which for this purpose is essentially protocol
analysis at a lower level of the stack.

4. Modeling and simulation: Threat modeling from the attacker perspective was mentioned in
a handful of papers, as was modeling and simulation of either the system or its protocols for
further analysis using mathematical techniques such as game or graph theory.

5. Fuzzing: Generating randomized input is a common way to test how a system deals with ar-
bitrary input. Fuzzing of network protocols is a common method cited in a number of re-
ports.

6. Input or traffic generation and spoofing: Unlike fuzzing, spoofing usually consists of con-
structing otherwise valid input to a system to cause it to exhibit unexpected behavior. Con-
structing bogus input from a valid or trusted source also falls into this category.

7. Scanning: Because most IoT are composed of multiple components, each of which may
have its own architecture and code base, it is often the case that a researcher can find known
vulnerabilities in systems simply by using available vulnerability scanning tools such as Nes-
sus or Metasploit.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 77
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8. Hardware hacking: This technique involves interfacing directly with the electronics at the
circuit level. It is a form of physical-level reverse engineering and can include mapping cir-
cuits and connecting with JTAG to dump memory state or firmware.

9. Debugging: This technique uses software-based or hardware-based debuggers. JTAG is a
common hardware debugging interface mentioned in many reports.

10. Writing code: This technique involves developing custom tools to assist with extracting,
characterizing, and analyzing data to identify vulnerabilities.

11. Application of specialized knowledge and skills: In some cases, just knowing how a sys-
tem works and approaching it with a security mindset is sufficient to find vulnerabilities. Ex-
amples include RFID and ModBus.

Many of the techniques listed above are common to vulnerability discovery in the traditional com-
puting and mobile world. However, the low-hanging fruit appears to hang much lower in the IoT
than in traditional computing. From a security perspective, even mobile systems have a head start,
although they are not as far along as traditional computing platforms. The fact is that many of the
vulnerabilities found thus far in IoT would be considered trivial—and rightly so—in the more ma-
ture market of servers and desktop computing. Yet the relative scale of the IoT market makes
even trivial vulnerabilities potentially risky in aggregate.

IoT Vulnerability Analysis

In our review of recent security research that focused on vulnerability discovery in the Internet of
Things, we identified several key differences between IoT and traditional computing and mobile
platforms, including

1. Limited instrumentation: The vulnerability analyst’s ability to instrument the system in or-
der to test its security can be limited. Many of the systems comprise embedded devices that
are effectively black boxes at the network level. On the surface, this limitation might appear
to be beneficial to the security of the system; if it’s hard to create an analysis environment, it
might be difficult to find vulnerabilities in the system. However, the problem is that while a
determined and/or well-resourced attacker can overcome such obstacles and get on with
finding vulnerabilities, a lack of instrumentation can make it difficult even for the vendor to
adequately test the security of its own products.

2. Less familiar system architectures: IoT architectures are often different from those most
often encountered by the typical vulnerability analyst. In short, ARM is neither x86 nor
IA64, and some embedded systems are neither. Although this limitation is trivially obvious
at a technical level, many vulnerability researchers and analysts will have to overcome this
skill gap if they are to remain effective at finding and remediating vulnerabilities in IoT.

3. Limited user interfaces: User interfaces on the devices themselves are extremely limited—a
few LEDs, maybe some switches or buttons, and that’s about it. Thus, significant effort can
be required just to provide input or get the feedback needed to perform security analysis
work.

4. Proprietary protocols: The network protocols used above the transport layer are often pro-
prietary. Although the spread of HTTP/HTTPS continues in this space as it has in the tradi-
tional and mobile spaces, there are many extant protocols that are poorly documented or
wholly undocumented. The effort required to identify and understand higher level protocols,

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 78
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

given sometimes scant information about them, can be daunting. Techniques and tools for
network protocol inference and reverse engineering can be effective tactics. However, if ven-
dors were more open with their protocol specifications, much of the need for that effort
would be obviated.

5. Lack of updatability: Unlike most other devices (laptops, PCs, smartphones, tablets), many
IoT are either non-updateable or require significant effort to update. Systems that cannot be
updated become less secure over time as new vulnerabilities are found and novel attack tech-
niques emerge. Because vulnerabilities are often discovered long after a system has been de-
livered, systems that lack facilities for secure updates once deployed present a long-term risk
to the networks in which they reside. This design flaw is perhaps the most significant one al-
ready found in many IoT, and if not corrected across the board, could lead to years if not
decades of increasingly insecure devices acting as reservoirs of infection or as platforms for
lateral movement by attackers of all types.

6. Lack of security tools: Security tools used for prevention, detection, analysis, and remedia-
tion in traditional computing systems have evolved and matured significantly over a period
of decades. And while in many cases similar concepts apply to IoT, the practitioner will ob-
serve a distinct gap in available tools when attempting to secure or even observe such a sys-
tem in detail. Packet capture and decoding, traffic analysis, reverse engineering and binary
analysis, and the like are all transferable as concepts if not directly as tools, yet the tooling is
far weaker when you get outside of the realm of Windows and Unix-based (including OSX)
operating systems running on x86/IA64 architectures.

7. Vulnerability scanning tool and database bias: Vulnerability scanning tools largely look
for known vulnerabilities. They, in turn, depend on vulnerability databases for their source
material. However, databases of known vulnerabilities—CVE [14], the National Vulnerabil-
ity Database (NVD) [150], Japan Vulnerability Notes (JVN) [160] and the CERT Vulnera-
bility Notes Database [15] to name a few—are heavily biased by their history of tracking
vulnerabilities in traditional computing systems (e.g., Windows, Linux, OSX, Unix and vari-
ants). Recent conversations with these and other vulnerability database operators indicate
that the need to expand coverage into IoT is either a topic of active investigation and discus-
sion or a work already in progress. However, we can expect the existing gap to remain for
some time as these capabilities ramp up.

8. Inadequate threat models: Overly optimistic threat models are de rigueur among IoT.
Many IoT are developed with what can only be described as naive threat models that drasti-
cally underestimate the hostility of the environments into which the system will be deployed.
(Undocumented threat models are still threat models, even if they only exist in the assump-
tions made by the developer.) Even in cases where the developer of the main system is secu-
rity-knowledgeable, he or she often is composing systems out of components or libraries that
may not have been developed with the same degree of security consideration. This weakness
is especially pernicious in power- or bandwidth-constrained systems where the goal of
providing lightweight implementations supersedes the need to provide a minimum level of
security. We believe this is a false economy that only defers a much larger cost when the
system has been deployed, vulnerabilities are discovered, and remediation is difficult.

9. Third-party library vulnerabilities: We observe pervasive use of third-party libraries with
neither recognition of nor adequate planning for how to fix or mitigate the vulnerabilities
they inevitably contain. When a developer embeds a library into a system, that system can

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 79
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

inherit vulnerabilities subsequently found in the incorporated code. Although this is true in
the traditional computing world, it is even more concerning in contexts where many libraries
wind up as binary blobs and are simply included in the firmware as such. Lacking the ability
to analyze this black box code either in manual source code reviews or using most code anal-
ysis tools, vendors may find it difficult to examine the code’s security.

10. Unprepared vendors: Often we find that IoT vendors are not prepared to receive and handle
vulnerability reports from outside parties, such as the security researcher community. Many
also lack the ability to perform their own vulnerability discovery within their development
lifecycle. These difficulties tend to arise from one of two causes:
a. The vendor is comparatively small or new and has yet to form a product security inci-

dent response capability.
b. The vendor has deep engineering experience in its domain but has not fully incorpo-

rated the effect of network-enabling its devices into its engineering quality assurance
(this is related to the inadequate threat model point above).
Typically, vendors in the latter group may have very strong skills in safety engineering
or regulatory compliance, yet their internet security capability is lacking. Our experi-
ence is that many IoT vendors are surprised by the vulnerability disclosure process. We
frequently find ourselves having conversations that rehash two decades of vulnerability
coordination and disclosure debates with vendors who appear to experience something
similar to the Kübler-Ross stages of grief3 during the process.

11. Unresolved vulnerability disclosure debates: If we have learned anything in decades of
CVD at the CERT/CC, it is that there is no single right answer to most vulnerability disclo-
sure questions. However, in the traditional computing arena, most vendors and researchers
have settled into a reasonable rhythm of allowing the vendor some time to fix vulnerabilities
prior to publishing a vulnerability report more widely. Software as a service (SAAS) and
software distributed through app stores can often fix and deploy patches to most customers
quickly. On the opposite end of the spectrum, we find many IoT and embedded device ven-
dors for whom fixing a vulnerability might require a firmware upgrade or even physical re-
placement of affected devices. This diversity of requirements forces vendors and researchers
alike to reconsider their expectations with respect to the timing and level of detail provided
in vulnerability reports based on the systems affected. Coupled with the proliferation of IoT
vendors who are relative novices at internet-enabled devices and just becoming exposed to
the world of vulnerability research and disclosure, the shift toward IoT can be expected to
reinvigorate numerous disclosure debates as the various stakeholders work out their new-
found positions.

IoT Parting Thoughts

Although vulnerability analysis for IoT has much in common with security research in traditional
computing and mobile environments, there are a number of important distinctions outlined in this

3 The Kübler-Ross stages of grief are denial, anger, bargaining, depression, and acceptance. See http://www.ekr-
foundation.org/

http://www.ekrfoundation.org/
http://www.ekrfoundation.org/

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 80
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

appendix. The threats posed by these systems given their current proliferation trajectory are con-
cerning.

Even as they become more common, it can be difficult to identify the threats posed to a network
by IoT either alone or in aggregate. In the simplest sense one might think of it as a “hidden
Linux” problem: How many devices can you find in your immediate vicinity containing some
form of Linux? Do you know what their patch status is? Do you know how you’d deal with a crit-
ical vulnerability affecting them? Furthermore, while the hidden Linux problem isn’t going away
any time soon, we believe the third-party library problem will long outlast it. How many vulnera-
ble image parsers with a network-accessible attack vector share your home with you? How would
you patch them?

Dan Geer [157] puts it thus:

[A]n advanced persistent threat, one that is difficult to discover, difficult to remove, and dif-
ficult to attribute, is easier in a low-end monoculture, easier in an environment where much
of the computing is done by devices that are deaf and mute once installed or where those de-
vices operate at the very bottom of the software stack, where those devices bring no relevant
societal risk by their onesies and twosies, but do bring relevant societal risk at today’s extant
scales much less the scales coming soon.

We agree.

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 81
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix B – Traffic Light Protocol

This appendix is reproduced from https://www.first.org/tlp [140].

FIRST Standards Definitions and Usage Guidance — Version 1.0

1. Introduction

a. The Traffic Light Protocol (TLP) was created in order to facilitate greater sharing of infor-
mation. TLP is a set of designations used to ensure that sensitive information is shared with
the appropriate audience. It employs four colors to indicate expected sharing boundaries to be
applied by the recipient(s). TLP only has four colors; any designations not listed in this stand-
ard are not considered valid by FIRST.

b. TLP provides a simple and intuitive schema for indicating when and how sensitive information
can be shared, facilitating more frequent and effective collaboration. TLP is not a “control
marking” or classification scheme. TLP was not designed to handle licensing terms, handling
and encryption rules, and restrictions on action or instrumentation of information. TLP labels
and their definitions are not intended to have any effect on freedom of information or “sun-
shine” laws in any jurisdiction.

c. TLP is optimized for ease of adoption, human readability and person-to-person sharing; it may
be used in automated sharing exchanges, but is not optimized for that use.

d. TLP is distinct from the Chatham House Rule (when a meeting, or part thereof, is held under
the Chatham House Rule, participants are free to use the information received, but neither the
identity nor the affiliation of the speaker(s), nor that of any other participant, may be re-
vealed), but may be used in conjunction if it is deemed appropriate by participants in an infor-
mation exchange.

e. The source is responsible for ensuring that recipients of TLP information understand and can
follow TLP sharing guidance.

f. If a recipient needs to share the information more widely than indicated by the original TLP
designation, they must obtain explicit permission from the original source.

2. Usage

a. How to use TLP in email: TLP-designated email correspondence should indicate the TLP color
of the information in the Subject line and in the body of the email, prior to the designated in-
formation itself. The TLP color must be in capital letters: TLP:RED, TLP:AMBER,
TLP:GREEN, or TLP:WHITE.

b. How to use TLP in documents: TLP-designated documents should indicate the TLP color of the
information in the header and footer of each page. To avoid confusion with existing control
marking schemes, it is advisable to right-justify TLP designations. The TLP color should ap-
pear in capital letters and in 12-point type or greater.
RGB: TLP:RED : R=255, G=0, B=51, background: R=0, G=0, B=0 TLP:AMBER : R=255,
G=192, B=0, background: R=0, G=0, B=0 TLP:GREEN : R=51, G=255, B=0, background:
R=0, G=0, B=0 TLP:WHITE : R=255, G=255, B=255, background: R=0, G=0, B=0

https://www.first.org/tlp

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 82
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CMYK:  TLP:RED : C=0, M=100, Y=79, K=0, background: C=0, M=0, Y=0,
K=100 TLP:AMBER : C=0, M=25, Y=100, K=0, background: C=0, M=0, Y=0,
K=100 TLP:GREEN : C=79, M=0, Y=100, K=0, background: C=0, M=0, Y=0,
K=100 TLP:WHITE : C=0, M=0, Y=0, K=0, background: C=0, M=0, Y=0, K=100

3. TLP definitions

a. TLP:RED = Not for disclosure, restricted to participants only.
Sources may use TLP:RED when information cannot be effectively acted upon by additional
parties and could lead to impacts on a party’s privacy, reputation, or operations if misused.
Recipients may not share TLP:RED information with any parties outside of the specific ex-
change, meeting, or conversation in which it was originally disclosed. In the context of a
meeting, for example, TLP:RED information is limited to those present at the meeting. In
most circumstances, TLP:RED should be exchanged verbally or in person.

b. TLP:AMBER = Limited disclosure, restricted to participants’ organizations.
Sources may use TLP:AMBER when information requires support to be effectively acted
upon, yet carries risks to privacy, reputation, or operations if shared outside of the organiza-
tions involved. Recipients may only share TLP:AMBER information with members of their
own organization, and with clients or customers who need to know the information to protect
themselves or prevent further harm. Sources are at liberty to specify additional intended lim-
its of the sharing; these must be adhered to.

c. TLP:GREEN = Limited disclosure, restricted to the community.
Sources may use TLP:GREEN when information is useful for the awareness of all participat-
ing organizations as well as with peers within the broader community or sector. Recipients
may share TLP:GREEN information with peers and partner organizations within their sector
or community, but not via publicly accessible channels. Information in this category can be
circulated widely within a particular community. TLP:GREEN information may not be re-
leased outside of the community.

d. TLP:WHITE = Disclosure is not limited.
Sources may use TLP:WHITE when information carries minimal or no foreseeable risk of
misuse, in accordance with applicable rules and procedures for public release. Subject to
standard copyright rules, TLP:WHITE information may be distributed without restriction.

Notes:

1. This document uses “should” and “must” as defined by RFC-2119.

2. Comments or suggestions on this document can be sent to tlp-sig@first.org.

file://ad/dfs/users/cdixon/Documents/tlp-sig@first.org

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 83
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix C – Sample Vulnerability Report Form

This is a vulnerability report, typically sent from a reporter to a vendor. These reports may also be
shared among other third parties, by the reporter, the vendor, or a coordinator.

This is a report example based on the CERT/CC’s Vulnerability Reporting Form [79], and is not
meant to be exhaustive of all possibilities. Please modify the sections and format as necessary to
better suit your needs.

Vulnerability Report

The information below should be handled as (choose one):

TLP:RED / TLP:AMBER / TLP:GREEN / TLP: WHITE

Vulnerability

• Software/Product(s) containing the vulnerability:
• Vulnerability Description:
• How may an attacker exploit this vulnerability? (Proof of Concept):
• What is the impact of exploiting this vulnerability? (What does an attacker gain that the at-

tacker didn’t have before?)
• How did you find the vulnerability? (Be specific about tools and versions you used.)
• When did you find the vulnerability?

Disclosure Plans

• I have already reported this vulnerability to the following vendors and organizations:
• Is this vulnerability being publicly discussed? YES/NO, if yes then provide URL.
• Is there evidence that this vulnerability is being actively exploited? YES/NO, if yes, then

provide URL/evidence.
• I plan to publicly disclose this vulnerability...

− on this date: (Please include your time zone.)
− at this URL:

Reporter

• Name:
• Organization:
• Email:
• PGP Public Key (ASCII Armored or a URL):
• Telephone:
• May we provide your contact information to third parties? YES/NO
• Do you want to be publicly acknowledged in a disclosure? YES/NO

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 84
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Additional Information

• Vendor Tracking ID, CERT Tracking ID, or CVE ID if known:
• Additional Comments:

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 85
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix D – Sample Vulnerability Disclosure Document

The vulnerability disclosure document is also often referred to as a “security advisory,” particu-
larly if published by the vendor.

This is an example of a vulnerability disclosure document based on CERT/CC’s Vulnerability
Notes [15] format. It is not meant to be exhaustive of all scenarios. Please modify the sections and
format as necessary to better suit your needs.

Vulnerability Disclosure Document

Overview

• Brief Vulnerability Description: (try to keep it to 1-2 sentences)

Vulnerability ID

• CVE ID for this Vulnerability [14]:
• Any other IDs (vendor tracking ID, bug tracker ID, CERT ID, etc.):

Description

• Software/Product(s) containing the vulnerability:
• Version number of vulnerable software/product:
• Product Vendor:
• Type of Vulnerability, if known: (see MITRE’s CWE page [77] for list of common types of

vulnerabilities)
• Vulnerability Description:
• How may an attacker exploit this vulnerability? (Proof of Concept):

Impact

• What is the impact of exploiting this vulnerability? (What does an attacker gain that the at-
tacker didn’t have before?)

CVSS Score
• CVSS:3.0/AV:?/AC:?/PR:?/UI:?/S:?/C:?/I:?/A:? – 0.0 (LOW/MEDIUM/HIGH/CRITICAL)
• (Provide the full CVSS vector, not only the score. If possible, provide guidance on the tem-

poral and environmental metrics, not only the base metrics [80].)

Resolution

• Version containing the fix:
• URL or contact information to obtain the fix:
• Alternately, if no fix is available, list workaround or mitigation advice below:

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 86
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Reporter

This vulnerability was reported/discovered by _____________.

Author and/or Contact Info

For more information or questions, please contact:

• Name:
• Organization:
• Email:
• PGP Public Key (ASCII Armored or a URL):

Disclosure Timeline

• Date of First Vendor Contact Attempt:
• Date of Vendor Response:
• Date of Patch Release:
• Disclosure Date:

(List more dates here as necessary to document your communication attempts.)

References

(List reference URLs here: for example, vendor advisory, other disclosures, and links to advice on
mitigating problems.)

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 87
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix E – Disclosure Policy Templates

NTIA Early Stage Template

The NTIA Early Stage Template focuses on vulnerability disclosure policy development in
safety-critical industries, in which the potential for harm directly impacts public safety or causes
physical damage (e.g., automobiles or medical devices), but the lessons are easily adaptable by
any organization that builds or maintains its own software or systems. A discussion of issues and
template policy is included.

https://www.ntia.doc.gov/files/ntia/publications/ntia_vuln_disclosure_early_stage_template.pdf

Open Source Vulnerability Disclosure Framework

BugCrowd and CipherLaw created the Open Source Vulnerability Disclosure Framework, offered
under a Creative Commons Attribution 4.0 International License. The framework “is designed to
quickly and smoothly prepare your organization to work with the independent security researcher
community while reducing the legal risks to researchers and companies.” In addition to a policy
template “written with both simplicity and legal completeness in mind,” a guidance document is
provided for setting up a vulnerability disclosure program.

https://github.com/bugcrowd/disclosure-policy

U.S. GSA Vulnerability Disclosure Policy

The United States General Services Administration (GSA)’s Technology Transformation Service
(TTS) provides its vulnerability disclosure policy as a public domain resource.

https://github.com/18F/vulnerability-disclosure-policy

ENISA Good Practice Guide on Vulnerability Disclosure

The Good Practice Guide on Vulnerability Disclosure from European Union Agency for Network
and Information Security (ENISA) includes an annotated vulnerability disclosure policy template
as an Annex.

https://www.enisa.europa.eu/publications/vulnerability-disclosure/at_download/fullReport

U.S. Department of Justice Framework for a Vulnerability Disclosure
Program for Online Systems

The United States Department of Justice (DoJ) has published a white paper containing guidance
aimed at developing vulnerability disclosure programs for online systems and services. This re-
port makes a point to distinguish online systems and services from “third-party vulnerability dis-
closure and hands-on—rather than remote—examination of software, devices, or hardware” be-
cause of potentially distinct legal issues that may arise.

https://www.justice.gov/criminal-ccips/page/file/983996/download

https://www.ntia.doc.gov/files/ntia/publications/ntia_vuln_disclosure_early_stage_template.pdf
https://github.com/bugcrowd/disclosure-policy
https://github.com/18F/vulnerability-disclosure-policy
https://www.enisa.europa.eu/publications/vulnerability-disclosure/at_download/fullReport
https://www.justice.gov/criminal-ccips/page/file/983996/download

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 88
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The aforementioned report is one of many related white papers provided by the DoJ’s Computer
Crime and Intellectual Property section.

https://www.justice.gov/criminal-ccips/ccips-documents-and-reports

Where to Look for More

Numerous organizations have already posted their vulnerability disclosure policies. A wide vari-
ety of these policies can be found by searching the web for “vulnerability disclosure policy,” or
“vulnerability disclosure program,” or by browsing third-party vulnerability disclosure (e.g., bug
bounty) service providers’ hosted programs.

https://www.justice.gov/criminal-ccips/ccips-documents-and-reports

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 89
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Bibliography

URLs are valid as of the publication date of this document.

[1] B. Cancilla, "Return of the Browser Wars," August 2004. [Online]. Available:
http://www.ibmsystemsmag.com/ibmi/trends/whatsnew/Return-of-the-Browser-Wars/. [Accessed 17 May
2017].

[2] A. Manion, "Vulnerability Note VU#713878 Microsoft Internet Explorer does not properly validate source
of redirected frame," CERT/CC, 9 June 2004. [Online]. Available: https://www.kb.cert.org/vuls/id/713878.
[Accessed 17 May 2017].

[3] Oxford Living Dictionaries (English), "process," [Online]. Available:
https://en.oxforddictionaries.com/definition/process. [Accessed 17 May 2017].

[4] Kissel, Richard (Editor), "NISTIR 7298 Revision 2 Glossary of Key Information Security Terms," U.S.
Department of Commerce, 2013.

[5] R. Caralli, J. H. Allen and D. W. White, CERT Resilience Management Model: A Maturity Model for
Managing Operational Resilience, Addison-Wesley Professional, 2010.

[6] A. Shostack, Threat modeling: Designing for Security, John Wiley & Sons, 2014.

[7] F. Swiderski and W. Snyder, Threat Modeling, Microsoft Press, 2004.

[8] R. C. Seacord, The CERT C Secure Coding Standard, Pearson Education, 2008.

[9] F. Long, D. Mohindra, R. C. Seacord and D. a. S. D. Sutherland, The CERT Oracle Secure Coding Standard
for Java, Addison-Wesley Professional, 2011.

[10] G. McGraw, Software Security: Building Security In, Addison-Wesley Professional, 2006.

[11] G. Peterson, P. Hope and S. Lavenhar, "Architectural Risk Analysis," 2 July 2013. [Online]. Available:
https://www.us-cert.gov/bsi/articles/best-practices/architectural-risk-analysis/architectural-risk-analysis.
[Accessed 23 May 2017].

http://www.ibmsystemsmag.com/ibmi/trends/whatsnew/Return-of-the-Browser-Wars/
https://www.kb.cert.org/vuls/id/713878
https://en.oxforddictionaries.com/definition/process
https://www.us-cert.gov/bsi/articles/best-practices/architectural-risk-analysis/architectural-risk-analysis

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 90
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[12] J. Ryoo, R. Kazman and P. Anand, "Architectural Analysis for Security," IEEE Security & Privacy, vol. 13,
no. 6, pp. 52-59, 2015.

[13] A. Householder, "Like Nailing Jelly to the Wall: Difficulties in Defining "Zero-Day Exploit," CERT, 7 July
2015. [Online]. Available: https://insights.sei.cmu.edu/cert/2015/07/like-nailing-jelly-to-the-wall-
difficulties-in-defining-zero-day-exploit.html. [Accessed 23 May 2017].

[14] MITRE, "Common Vulnerabilities and Exposures," [Online]. Available: https://cve.mitre.org/. [Accessed 16
May 2017].

[15] CERT/CC, "Vulnerability Notes Database," [Online]. Available: https://www.kb.cert.org/vuls. [Accessed 16
May 2017].

[16] SecurityFocus, "Vulnerabilities," [Online]. Available: http://www.securityfocus.com/bid. [Accessed 23 May
2017].

[17] ISO/IEC, "ISO/IEC 29147:2014 Information technology—Security techniques—Vulnerability disclosure,"
2014.

[18] S. Christey and C. Wysopal, "Responsible Vulnerability Disclosure Process draft-christey-wysopal-vuln-
disclosure-00.txt," February 2002. [Online]. Available: https://tools.ietf.org/html/draft-christey-wysopal-
vuln-disclosure-00. [Accessed 17 May 2017].

[19] MSRC Ecosystem Strategy Team, "Coordinated Vulnerability Disclosure: Bringing Balance to the Force,"
22 July 2010. [Online]. Available: https://blogs.technet.microsoft.com/ecostrat/2010/07/22/coordinated-
vulnerability-disclosure-bringing-balance-to-the-force/. [Accessed 23 May 2017].

[20] Microsoft Security Response Center, "Coordinated Vulnerability Disclosure," Microsoft, [Online].
Available: https://technet.microsoft.com/en-us/security/dn467923.aspx. [Accessed 23 May 2017].

[21] M. Souppaya and K. Scarfone, "NIST Special Publication 800-40 Revision 3 Guide to Enterprise Patch
Management Technologies," U.S. Department of Commerce, 2013.

[22] A. Arora, A. Nandkumar and R. Telang, "Does information security attack frequency increase with
vulnerability disclosure? An empirical analysis," Information Systems Frontiers, vol. 8, no. 5, pp. 350-362,
2006.

[23] FIRST, "Forum for Incident Response and Security Teams," [Online]. Available: https://www.first.org/.
[Accessed 17 May 2017].

https://insights.sei.cmu.edu/cert/2015/07/like-nailing-jelly-to-the-wall-difficulties-in-defining-zero-day-exploit.html
https://insights.sei.cmu.edu/cert/2015/07/like-nailing-jelly-to-the-wall-difficulties-in-defining-zero-day-exploit.html
https://cve.mitre.org/
https://www.kb.cert.org/vuls
http://www.securityfocus.com/bid
https://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
https://tools.ietf.org/html/draft-christey-wysopal-vuln-disclosure-00
https://blogs.technet.microsoft.com/ecostrat/2010/07/22/coordinated-vulnerability-disclosure-bringing-balance-to-the-force/
https://blogs.technet.microsoft.com/ecostrat/2010/07/22/coordinated-vulnerability-disclosure-bringing-balance-to-the-force/
https://technet.microsoft.com/en-us/security/dn467923.aspx
https://www.first.org/

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 91
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[24] FIRST, "Vulnerability Coordination SIG," [Online]. Available:
https://www.first.org/global/sigs/vulnerability-coordination. [Accessed 17 May 2017].

[25] National Telecommunications and Information Administration, "Multistakeholder Process: Cybersecurity
Vulnerabilities," 15 December 2016. [Online]. Available: https://www.ntia.doc.gov/other-
publication/2016/multistakeholder-process-cybersecurity-vulnerabilities. [Accessed 17 May 2017].

[26] Harm Reduction Coalition, "Principles of Harm Reduction," [Online]. Available:
http://harmreduction.org/about-us/principles-of-harm-reduction/. [Accessed 23 May 2017].

[27] Harm Reduction Coalition, "What is harm reduction?" [Online]. Available: https://www.hri.global/what-is-
harm-reduction. [Accessed 23 May 2017].

[28] A. Householder, "Systemic Vulnerabilities: An Allegorical Tale of SteampunkVulnerability to Aero-
Physical Threats," August 2015. [Online]. Available: https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=442528. [Accessed 17 May 2017].

[29] I Am The Cavalry, "5 Motivations of Security Researchers," [Online]. Available:
https://www.iamthecavalry.org/motivations/. [Accessed 17 May 2017].

[30] NTIA Awareness and Adoption Working Group, "Vulnerability Disclosure Attitudes and Actions: A
Research Report from the NTIA Awareness and Adoption Group," 15 December 2016. [Online]. Available:
https://www.ntia.doc.gov/files/ntia/publications/2016_ntia_a_a_vulnerability_disclosure_insights_report.pdf.
[Accessed 6 June 2017].

[31] FIRST, "Ethics SIG," [Online]. Available: https://www.first.org/global/sigs/ethics. [Accessed 17 May 2017].

[32] Association for Computing Machinery, "ACM Code of Ethics and Professional Conduct," 16 October 1992.
[Online]. Available: https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct.
[Accessed 17 May 2017].

[33] USENIX, "System Administrators' Code of Ethics," 30 September 2003. [Online]. Available:
https://www.usenix.org/system-administrators-code-ethics. [Accessed 17 May 2017].

[34] American Press Institute, "What is the purpose of journalism?" [Online]. Available:
https://www.americanpressinstitute.org/journalism-essentials/what-is-journalism/purpose-journalism/.
[Accessed 17 May 2017].

https://www.first.org/global/sigs/vulnerability-coordination
https://www.ntia.doc.gov/other-publication/2016/multistakeholder-process-cybersecurity-vulnerabilities
https://www.ntia.doc.gov/other-publication/2016/multistakeholder-process-cybersecurity-vulnerabilities
http://harmreduction.org/about-us/principles-of-harm-reduction/
https://www.hri.global/what-is-harm-reduction
https://www.hri.global/what-is-harm-reduction
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=442528
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=442528
https://www.iamthecavalry.org/motivations/
https://www.ntia.doc.gov/files/ntia/publications/2016_ntia_a_a_vulnerability_disclosure_insights_report.pdf
https://www.first.org/global/sigs/ethics
https://www.acm.org/about-acm/acm-code-of-ethics-and-professional-conduct
https://www.usenix.org/system-administrators-code-ethics
https://www.americanpressinstitute.org/journalism-essentials/what-is-journalism/purpose-journalism/

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 92
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[35] Society of Professional Journalists, "SPJ Code of Ethics," 6 September 2014. [Online]. Available:
https://www.spj.org/ethicscode.asp. [Accessed 17 May 2017].

[36] A. Ozment and S. E. Schechter, "Milk or wine: Does software security improve with age?" in USENIX
Security, 2006.

[37] K. Matsudaira, "Bad Software Architecture Is a People Problem," Communications of the ACM, vol. 59, no.
9, pp. 42-43, September 2016.

[38] J. M. Wing, "A Symbiotic Relationship Between Formal Methods and Security," in Proceedings of the
Conference on Computer Security, Dependability and Assurance: From Needs to Solutions, 1998.

[39] E. Bobukh, "Equation of a Fuzzing Curve — Part 1/2," 18 December 2014. [Online]. Available:
https://blogs.msdn.microsoft.com/eugene_bobukh/2014/12/18/equation-of-a-fuzzing-curve-part-12/.
[Accessed 23 May 2017].

[40] E. Bobukh, "Equation of a Fuzzing Curve — Part 2/2," 6 January 2015. [Online]. Available:
https://blogs.msdn.microsoft.com/eugene_bobukh/2015/01/06/equation-of-a-fuzzing-curve-part-22/.
[Accessed 23 May 2017].

[41] H. W. Rittel and M. M. Webber, "Dilemmas in a General Theory of Planning," Policy Sciences, vol. 4, no.
1973, pp. 155-169, June 1973.

[42] BBC, "Xbox password flaw exposed by five-year-old boy," 4 April 2014. [Online]. Available:
http://www.bbc.com/news/technology-26879185. [Accessed 16 May 2017].

[43] Microsoft, "What is the Security Development Lifecycle?" [Online]. Available:
https://www.microsoft.com/en-us/sdl/. [Accessed 16 May 2017].

[44] BSIMM, "BSIMM Framework," [Online]. Available: https://www.bsimm.com/framework/. [Accessed 16
May 2017].

[45] ISO/IEC, "ISO/IEC 30111:2013 Information technology—Security techniques—Vulnerability handling
processes," 2013.

[46] Microsoft, "Microsoft Security Response Center," [Online]. Available: https://technet.microsoft.com/en-
us/security/dn440717.aspx. [Accessed 23 May 2017].

https://www.spj.org/ethicscode.asp
https://blogs.msdn.microsoft.com/eugene_bobukh/2014/12/18/equation-of-a-fuzzing-curve-part-12/
https://blogs.msdn.microsoft.com/eugene_bobukh/2015/01/06/equation-of-a-fuzzing-curve-part-22/
http://www.bbc.com/news/technology-26879185
https://www.microsoft.com/en-us/sdl/
https://www.bsimm.com/framework/
https://technet.microsoft.com/en-us/security/dn440717.aspx
https://technet.microsoft.com/en-us/security/dn440717.aspx

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 93
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[47] Cisco Systems, "Security Vulnerability Policy," [Online]. Available:
https://www.cisco.com/c/en/us/about/security-center/security-vulnerability-policy.html. [Accessed 23 May
2017].

[48] FIRST, "FIRST Teams," [Online]. Available: https://www.first.org/members/teams. [Accessed 16 May
2017].

[49] CERT Division, "CSIRT Frequently Asked Questions (FAQ)," Software Engineering Institute, [Online].
Available: https://www.cert.org/incident-management/csirt-development/csirt-faq.cfm? [Accessed 16 May
2017].

[50] CERT Division, "Incident Management: Resources for National CSIRTs," Software Engineering Institute,
[Online]. Available: https://www.cert.org/incident-management/national-csirts/index.cfm. [Accessed 16 May
2017].

[51] CERT, "List of National CSIRTs," [Online]. Available: https://www.cert.org/incident-management/national-
csirts/national-csirts.cfm. [Accessed 23 May 2017].

[52] BugCrowd, "BugCrowd," [Online]. Available: https://bugcrowd.com/. [Accessed 23 May 2017].

[53] HackerOne, "HackerOne," [Online]. Available: https://www.hackerone.com. [Accessed 23 May 2017].

[54] SynAck, "SynAck," [Online]. Available: https://www.synack.com. [Accessed 23 May 2017].

[55] Cobalt Labs Inc., "Cobalt," [Online]. Available: https://cobalt.io/. [Accessed 23 May 2017].

[56] CERT, "Vulnerability Analysis," [Online]. Available: https://www.cert.org/vulnerability-analysis/.
[Accessed 23 May 2017].

[57] National Cyber Security Centre Netherlands, "NCSC-NL," [Online]. Available: https://www.ncsc.nl/english.
[Accessed 23 May 2017].

[58] NCSC-FI, "Finnish Communications Regulatory Authority / National Cyber Security Centre Finland,"
[Online]. Available: https://www.viestintavirasto.fi/en/cybersecurity.html.

[59] JPCERT/CC, "Japan Computer Emergency Response Team Coordination Center," [Online]. Available:
https://www.jpcert.or.jp/english/. [Accessed 16 May 2017].

https://www.cisco.com/c/en/us/about/security-center/security-vulnerability-policy.html
https://www.first.org/members/teams
https://www.cert.org/incident-management/csirt-development/csirt-faq.cfm?
https://www.cert.org/incident-management/national-csirts/index.cfm
https://www.cert.org/incident-management/national-csirts/national-csirts.cfm
https://www.cert.org/incident-management/national-csirts/national-csirts.cfm
https://bugcrowd.com/
https://www.hackerone.com
https://www.synack.com
https://cobalt.io/
https://www.cert.org/vulnerability-analysis/
https://www.ncsc.nl/english
https://www.viestintavirasto.fi/en/cybersecurity.html
https://www.jpcert.or.jp/english/

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 94
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[60] U.S. Department of Homeland Security, "Information Sharing and Analysis Organizations (ISAOs),"
[Online]. Available: https://www.dhs.gov/isao. [Accessed 23 May 2017].

[61] National Council of ISACs, "National Council of ISACs," [Online]. Available:
https://www.nationalisacs.org/. [Accessed 23 May 2017].

[62] W. Dormann, "Supporting the Android Ecosystem," 19 October 2015. [Online]. Available:
https://insights.sei.cmu.edu/cert/2015/10/supporting-the-android-ecosystem.html. [Accessed 23 May 2017].

[63] U.S. Food & Drug Administration, "Medical Device Reporting (MDR)," [Online]. Available:
https://www.fda.gov/medicaldevices/safety/reportaproblem/. [Accessed 23 May 2017].

[64] National Highway Traffic Safety Administration, "File a Vehicle Safety Complaint," [Online]. Available:
https://www-odi.nhtsa.dot.gov/VehicleComplaint/. [Accessed 23 May 2017].

[65] Federal Aviation Administration, "Report Safety Issues," [Online]. Available:
https://www.faa.gov/aircraft/safety/report/. [Accessed 23 May 2017].

[66] NASA Office of the Chief Engineer, "NASA Lessons Learned," NASA Lessons Learned Steering
Committee (LLSC), [Online]. Available: https://www.nasa.gov/offices/oce/functions/lessons/index.html.
[Accessed 16 May 2017].

[67] European Commission, "Dual Use Controls: Commission proposes to modernise and strengthen controls on
exports of dual-use items," 28 September 2016. [Online]. Available: http://europa.eu/rapid/press-release_IP-
16-3190_en.htm. [Accessed 23 May 2017].

[68] FIRST, "Vulnerability Database Catalog," FIRST VRDX SIG, 17 March 2016. [Online]. Available:
https://www.first.org/global/sigs/vrdx/vdb-catalog. [Accessed 16 May 2017].

[69] J. T. Chambers and J. W. Thompson, "National Infrastructure Advisory Council Vulnerability Disclosure
Framework Final Report and Recommendations by the Council," 13 January 2004. [Online]. Available:
https://www.dhs.gov/xlibrary/assets/vdwgreport.pdf. [Accessed 17 May 2017].

[70] J. C. Knight, "Safety critical systems: challenges and directions," in ICSE '02 Proceedings of the 24th
International Conference on Software Engineering, Orlando, 2002.

[71] U.S. Department of Health & Human Services, "Health Information Privacy," [Online]. Available:
https://www.hhs.gov/hipaa/. [Accessed 23 May 2017].

https://www.dhs.gov/isao
https://www.nationalisacs.org/
https://insights.sei.cmu.edu/cert/2015/10/supporting-the-android-ecosystem.html
https://www.fda.gov/medicaldevices/safety/reportaproblem/
https://www-odi.nhtsa.dot.gov/VehicleComplaint/
https://www.faa.gov/aircraft/safety/report/
https://www.nasa.gov/offices/oce/functions/lessons/index.html
http://europa.eu/rapid/press-release_IP-16-3190_en.htm
http://europa.eu/rapid/press-release_IP-16-3190_en.htm
https://www.first.org/global/sigs/vrdx/vdb-catalog
https://www.dhs.gov/xlibrary/assets/vdwgreport.pdf
https://www.hhs.gov/hipaa/

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 95
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[72] U.S. Department of Education, "Family Educational Rights and Privacy Act (FERPA)," [Online]. Available:
https://ed.gov/policy/gen/guid/fpco/ferpa/index.html. [Accessed 23 May 2017].

[73] Federal Trade Commission, "Children's Online Privacy Protection Rule ("COPPA")," [Online]. Available:
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-
protection-rule. [Accessed 23 May 2017].

[74] PCI Security Standards Council, "PCI Security," [Online]. Available:
https://www.pcisecuritystandards.org/pci_security/. [Accessed 23 May 2017].

[75] Electronic Frontier Foundation, "Coders’ Rights Project Vulnerability Reporting FAQ," [Online]. Available:
https://www.eff.org/issues/coders/vulnerability-reporting-faq. [Accessed 17 May 2017].

[76] K. Price, "Writing a bug report - Attack Scenario and Impact are key!" 2 August 2015. [Online]. Available:
https://forum.bugcrowd.com/t/writing-a-bug-report-attack-scenario-and-impact-are-key/640. [Accessed 17
May 2017].

[77] MITRE, "Common Weakness Enumeration (CWE)," [Online]. Available: https://cwe.mitre.org/. [Accessed
17 May 2017].

[78] MITRE, "Common Attack Pattern Enumeration and Classification," [Online]. Available:
https://capec.mitre.org/. [Accessed 17 May 2017].

[79] CERT/CC, "Vulnerability Reporting Form," [Online]. Available: https://vulcoord.cert.org/VulReport/.
[Accessed 17 May 2017].

[80] FIRST, "Common Vulnerability Scoring System," [Online]. Available: https://www.first.org/cvss. [Accessed
17 May 2017].

[81] MITRE, "Common Weakness Scoring System (CWSS) version 1.0.1," 5 September 2014. [Online].
Available: https://cwe.mitre.org/cwss/cwss_v1.0.1.html. [Accessed 17 May 2017].

[82] Security Focus, "BugTraq Archive," [Online]. Available: http://www.securityfocus.com/archive/1.
[Accessed 23 May 2017].

[83] Seclists.org, "Full Disclosure Mailing List," [Online]. Available: http://seclists.org/fulldisclosure/. [Accessed
23 May 2017].

https://ed.gov/policy/gen/guid/fpco/ferpa/index.html
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.pcisecuritystandards.org/pci_security/
https://www.eff.org/issues/coders/vulnerability-reporting-faq
https://forum.bugcrowd.com/t/writing-a-bug-report-attack-scenario-and-impact-are-key/640
https://cwe.mitre.org/
https://capec.mitre.org/
https://vulcoord.cert.org/VulReport/
https://www.first.org/cvss
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
http://www.securityfocus.com/archive/1
http://seclists.org/fulldisclosure/

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 96
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[84] MITRE, "Common Vulnerabilities and Exposures (CVE) Numbering Authority (CNA) Rules Version 1.1,"
16 September 2016. [Online]. Available: https://cve.mitre.org/cve/cna/CNA_Rules_v1.1.pdf. [Accessed 16
May 2017].

[85] J. Postel, "Internet Protocol (RFC 760)," 1980.

[86] N. Brownlee and E. Guttman, "Expectations for Computer Security Incident Response," The Internet
Society, 1998.

[87] S. Shepherd, "Vulnerability Disclosure: How Do We Define Responsible Disclosure?" SANS GIAC SEC
Practical Repository, 2003.

[88] FIRST, "Multi-Party Coordination and Disclosure," [Online]. Available:
https://www.first.org/global/sigs/vulnerability-coordination/multiparty. [Accessed 6 June 2017].

[89] Codenomicon, "The Heartbleed Bug," 29 April 2014. [Online]. Available: http://heartbleed.com/. [Accessed
16 May 2017].

[90] J. P. Lanza, "Vulnerability Note VU#484891 Microsoft SQL Server 2000 contains stack buffer overflow in
SQL Server Resolution Service," 26 July 2002. [Online]. Available: https://www.kb.cert.org/vuls/id/484891.
[Accessed 23 May 2017].

[91] W. Dormann, "Vulnerability Note VU#916896 Oracle Outside In 8.5.2 contains multiple stack buffer
overflows," 20 January 2016. [Online]. Available: https://www.kb.cert.org/vuls/id/916896. [Accessed 23
May 2017].

[92] W. Dormann, "Vulnerability Note VU#582497 Multiple Android applications fail to properly validate SSL
certificates," CERT/CC, 3 September 2014. [Online]. Available: https://www.kb.cert.org/vuls/id/582497.
[Accessed 16 May 2017].

[93] W. Dormann, "Android apps that fail to validate SSL," 29 August 2014. [Online]. Available:
https://docs.google.com/spreadsheets/d/1t5GXwjw82SyunALVJb2w0zi3FoLRIkfGPc7AMjRF0r4.
[Accessed 16 May 2017].

[94] University of Oulu, "PROTOS Test-Suite: c06-snmpv1," 2002. [Online]. Available:
https://www.ee.oulu.fi/research/ouspg/PROTOS_Test-Suite_c06-snmpv1. [Accessed 16 May 2017].

[95] I. A. Finlay, S. V. Hernan, J. A. Rafail, C. Dougherty, A. D. Householder, M. Lindner and A. Manion,
"Multiple Vulnerabilities in Many Implementations of the Simple Network Management Protocol (SNMP),"

https://cve.mitre.org/cve/cna/CNA_Rules_v1.1.pdf
https://www.first.org/global/sigs/vulnerability-coordination/multiparty
http://heartbleed.com/
https://www.kb.cert.org/vuls/id/484891
https://www.kb.cert.org/vuls/id/916896
https://www.kb.cert.org/vuls/id/582497
https://docs.google.com/spreadsheets/d/1t5GXwjw82SyunALVJb2w0zi3FoLRIkfGPc7AMjRF0r4
https://www.ee.oulu.fi/research/ouspg/PROTOS_Test-Suite_c06-snmpv1

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 97
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

CERT/CC, 12 February 2002. [Online]. Available: https://www.cert.org/historical/advisories/CA-2002-
03.cfm. [Accessed 16 May 2017].

[96] I. A. Finlay, "Vulnerability Note VU#854306 Multiple vulnerabilities in SNMPv1 request handling,"
CERT/CC, 12 February 2002. [Online]. Available: https://www.kb.cert.org/vuls/id/854306. [Accessed 16
May 2017].

[97] I. A. Finlay, "Vulnerability Note VU#107186 Multiple vulnerabilities in SNMPv1 trap handling,"
CERT/CC, 12 February 2002. [Online]. Available: https://www.kb.cert.org/vuls/id/107186. [Accessed 16
May 2017].

[98] B. Stock, G. Pellegrino and C. Rossow, "Hey, You Have a Problem: On the Feasibility of Large-Scale Web
Vulnerability Notification," in 25th USENIX Security Symposium, 2016.

[99] R. M. Axelrod, The Evolution of Cooperation, Revised ed., Basic books, 2006.

[100] D. R. Grimes, "On the Viability of Conspiratorial Beliefs," PLOS One, vol. 11, no. 1, p. e0147905, 26
January 2016.

[101] Black Hat, "Black Hat," [Online]. Available: https://www.blackhat.com/. [Accessed 23 May 2017].

[102] DEF CON, "DEF CON," [Online]. Available: https://www.defcon.org/. [Accessed 23 May 2017].

[103] USENIX, "USENIX Security Conferences," [Online]. Available:
https://www.usenix.org/conferences/byname/108. [Accessed 23 May 2017].

[104] RSA, "RSA Conference," [Online]. Available: https://www.rsaconference.com/. [Accessed 23 May 2017].

[105] CanSecWest, "CanSecWest Vancouver 2018," [Online]. Available: https://cansecwest.com/. [Accessed 23
May 2017].

[106] Federal Trade Commission, "ASUSTeK Computer Inc., In the Matter of," 28 July 2016. [Online]. Available:
https://www.ftc.gov/enforcement/cases-proceedings/142-3156/asustek-computer-inc-matter. [Accessed 16
May 2017].

[107] Federal Trade Commission, "HTC America Inc., In the Matter of," 2 July 2013. [Online]. Available:
https://www.ftc.gov/enforcement/cases-proceedings/122-3049/htc-america-inc-matter. [Accessed 16 May
2017].

https://www.cert.org/historical/advisories/CA-2002-03.cfm
https://www.cert.org/historical/advisories/CA-2002-03.cfm
https://www.kb.cert.org/vuls/id/854306
https://www.kb.cert.org/vuls/id/107186
https://www.blackhat.com/
https://www.defcon.org/
https://www.usenix.org/conferences/byname/108
https://www.rsaconference.com/
https://cansecwest.com/
https://www.ftc.gov/enforcement/cases-proceedings/142-3156/asustek-computer-inc-matter
https://www.ftc.gov/enforcement/cases-proceedings/122-3049/htc-america-inc-matter

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 98
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[108] Federal Trade Commission, "Fandango, LLC," 19 August 2014. [Online]. Available:
https://www.ftc.gov/enforcement/cases-proceedings/132-3089/fandango-llc. [Accessed 16 May 2017].

[109] A. Askar, "Minecraft Vulnerability Advisory," 16 April 2015. [Online]. Available:
http://blog.ammaraskar.com/minecraft-vulnerability-advisory/. [Accessed 23 May 2017].

[110] A. Ozment, "The Likelihood of Vulnerability Rediscovery and the Social Utility of Vulnerability Hunting,"
in Workshop on Economics and Information Security, 2005.

[111] M. Finifter, D. Akhawe and D. Wagner, "An Empirical Study of Vulnerability Rewards Programs," in 22nd
USENIX Security Symposium, 2013.

[112] L. Ablon and T. Bogart, "Zero Days, Thousands of Nights," RAND Corporation, 2017.

[113] T. Herr and B. Schneier, "Taking Stock: Estimating Vulnerability Rediscovery," 7 March 2017. [Online].
Available: https://ssrn.com/abstract=2928758. [Accessed 16 May 2017].

[114] B. Grubb, "Heartbleed disclosure timeline: who knew what and when," The Sydney Morning Herald, 15
April 2014. [Online]. Available: http://www.smh.com.au/it-pro/security-it/heartbleed-disclosure-timeline-
who-knew-what-and-when-20140414-zqurk.html. [Accessed 23 May 2017].

[115] SerNet, "Badlock Bug," 12 April 2016. [Online]. Available: http://www.badlock.org/. [Accessed 23 May
2017].

[116] N. Perlroth, "Security Experts Expect ‘Shellshock’ Software Bug in Bash to Be Significant," 25 September
2014. [Online]. Available: https://www.nytimes.com/2014/09/26/technology/security-experts-expect-
shellshock-software-bug-to-be-significant.html. [Accessed 23 May 2017].

[117] A. Sarwate, "The GHOST Vulnerability," 27 January 2015. [Online]. Available:
https://blog.qualys.com/laws-of-vulnerabilities/2015/01/27/the-ghost-vulnerability. [Accessed 23 May
2017].

[118] A. Watts, C. Huang and L. Chih-chang. Tao: The Watercourse Way, Pantheon, 1975.

[119] M. Masnick, "For 10 Years Everyone's Been Using 'The Streisand Effect' Without Paying; Now I'm Going
To Start Issuing Takedowns," 8 January 2015. [Online]. Available:
https://www.techdirt.com/articles/20150107/13292829624/10-years-everyones-been-using-streisand-effect-
without-paying-now-im-going-to-start-issuing-takedowns.shtml. [Accessed 23 May 2017].

https://www.ftc.gov/enforcement/cases-proceedings/132-3089/fandango-llc
http://blog.ammaraskar.com/minecraft-vulnerability-advisory/
https://ssrn.com/abstract=2928758
http://www.smh.com.au/it-pro/security-it/heartbleed-disclosure-timeline-who-knew-what-and-when-20140414-zqurk.html
http://www.smh.com.au/it-pro/security-it/heartbleed-disclosure-timeline-who-knew-what-and-when-20140414-zqurk.html
http://www.badlock.org/
https://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
https://www.nytimes.com/2014/09/26/technology/security-experts-expect-shellshock-software-bug-to-be-significant.html
https://blog.qualys.com/laws-of-vulnerabilities/2015/01/27/the-ghost-vulnerability
https://www.techdirt.com/articles/20150107/13292829624/10-years-everyones-been-using-streisand-effect-without-paying-now-im-going-to-start-issuing-takedowns.shtml
https://www.techdirt.com/articles/20150107/13292829624/10-years-everyones-been-using-streisand-effect-without-paying-now-im-going-to-start-issuing-takedowns.shtml

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 99
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[120] R. Devendra, "Key Elements of the Sprint Retrospective," 24 April 2014. [Online]. Available:
https://www.scrumalliance.org/community/articles/2014/april/key-elements-of-sprint-retrospective.
[Accessed 23 May 2017].

[121] CERT/CC, "Sending Sensitive Information," [Online]. Available: https://www.cert.org/contact/sensitive-
information.cfm. [Accessed 24 May 2017].

[122] Symantec, "Symantec Desktop Email Encryption," [Online]. Available:
https://www.symantec.com/products/information-protection/encryption/desktop-email-encryption.
[Accessed 24 May 2017].

[123] The GnuPG Project, "GNU Privacy Guard," [Online]. Available: https://gnupg.org/. [Accessed 24 May
2017].

[124] B. Ramsdell and S. Turner, "RFC 5751 Secure/Multipurpose Internet Mail Extensions (S/MIME) Version
3.2 Message Specification," January 2010. [Online]. Available: https://tools.ietf.org/html/rfc5751. [Accessed
24 May 2017].

[125] Internet Security Research Group (ISRG), "Let's Encrypt," [Online]. Available: https://letsencrypt.org/.
[Accessed 16 May 2017].

[126] The Enigmail Project, "Enigmail," [Online]. Available: https://www.enigmail.net/index.php/en/. [Accessed
24 May 2017].

[127] Gpg4win Initiative, "GNU Privacy Guard for Windows," [Online]. Available: https://www.gpg4win.org/.
[Accessed 24 May 2017].

[128] "KGpg," [Online]. Available: https://utils.kde.org/projects/kgpg/. [Accessed 24 May 2017].

[129] G. Wassermann, "Reach Out and Mail Someone," 6 August 2015. [Online]. Available:
https://insights.sei.cmu.edu/cert/2015/08/reach-out-and-mail-someone.html. [Accessed 24 May 2017].

[130] "White Source Software," [Online]. Available: https://www.whitesourcesoftware.com/. [Accessed 24 May
2017].

[131] "Black Duck Software," [Online]. Available: https://www.blackducksoftware.com. [Accessed 24 May 2017].

[132] "Sonatype," [Online]. Available: https://www.sonatype.com/. [Accessed 24 May 2017].

https://www.scrumalliance.org/community/articles/2014/april/key-elements-of-sprint-retrospective
https://www.cert.org/contact/sensitive-information.cfm
https://www.cert.org/contact/sensitive-information.cfm
https://www.symantec.com/products/information-protection/encryption/desktop-email-encryption
https://gnupg.org/
https://tools.ietf.org/html/rfc5751
https://letsencrypt.org/
https://www.enigmail.net/index.php/en/
https://www.gpg4win.org/
https://utils.kde.org/projects/kgpg/
https://insights.sei.cmu.edu/cert/2015/08/reach-out-and-mail-someone.html
https://www.whitesourcesoftware.com/
https://www.blackducksoftware.com
https://www.sonatype.com/

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 100
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[133] "Synopsis," [Online]. Available: https://www.synopsys.com/. [Accessed 24 May 2017].

[134] "Flexera Software," [Online]. Available: https://www.flexerasoftware.com/. [Accessed 24 May 2017].

[135] TagVault.org, "SWID Tags," [Online]. Available: http://tagvault.org/swid-tags/. [Accessed 16 May 2017].

[136] National Institute of Standards and Technology, "Common Platform Enumeration (CPE)," [Online].
Available: https://scap.nist.gov/specifications/cpe/ [Accessed 16 May 2017].

[137] SPDX Workgroup, "Software Package Data Exchange," [Online]. Available: https://spdx.org/ . [Accessed 16
May 2017].

[138] CERT, "Dranzer," [Online]. Available: https://vuls.cert.org/confluence/display/tools/Dranzer. [Accessed 24
May 2017].

[139] CERT, "BFF - Basic Fuzzing Framework," [Online]. Available:
https://vuls.cert.org/confluence/display/tools/CERT+BFF+-+Basic+Fuzzing+Framework. [Accessed 24 May
2017].

[140] FIRST, "TRAFFIC LIGHT PROTOCOL (TLP) FIRST Standards Definitions and Usage Guidance —
Version 1.0," [Online]. Available: https://www.first.org/tlp. [Accessed 16 May 2017].

[141] B. Rothke, "Building a Security Operations Center (SOC)," 29 Feb 2012. [Online]. Available:
https://www.rsaconference.com/events/us12/agenda/sessions/683/building-a-security-operations-center-soc.
[Accessed 24 May 2017].

[142] S. Ragan, "Avoiding burnout: Ten tips for hackers working incident response," 30 April 2014. [Online].
Available: http://www.csoonline.com/article/2149900/infosec-careers/avoiding-burnout-ten-tips-for-hackers-
working-incident-response.html. [Accessed 24 May 2017].

[143] S. C. Sundaramurthy, A. G. Bardas, J. Case, X. Ou, M. Wesch, J. McHugh and S. R. Rajagopalan, "A human
capital model for mitigating security analyst burnout," in Proceedings of the Eleventh Symposium on Usable
Privacy and Security (SOUPS 2015), July 2015.

[144] A. Householder, "Vulnerability IDs, Fast and Slow," 11 March 2016. [Online]. Available:
https://insights.sei.cmu.edu/cert/2016/03/vulnerability-ids-fast-and-slow.html. [Accessed 7 June 2017].

https://www.synopsys.com/
https://www.flexerasoftware.com/
http://tagvault.org/swid-tags/
https://scap.nist.gov/specifications/cpe/
https://spdx.org/
https://vuls.cert.org/confluence/display/tools/Dranzer
https://vuls.cert.org/confluence/display/tools/CERT+BFF+-+Basic+Fuzzing+Framework
https://www.first.org/tlp
https://www.rsaconference.com/events/us12/agenda/sessions/683/building-a-security-operations-center-soc
http://www.csoonline.com/article/2149900/infosec-careers/avoiding-burnout-ten-tips-for-hackers-working-incident-response.html
http://www.csoonline.com/article/2149900/infosec-careers/avoiding-burnout-ten-tips-for-hackers-working-incident-response.html
https://insights.sei.cmu.edu/cert/2016/03/vulnerability-ids-fast-and-slow.html

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 101
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[145] N. Mercer, "Further simplifying servicing models for Windows 7 and Windows 8.1," 15 August 2016.
[Online]. Available: https://blogs.technet.microsoft.com/windowsitpro/2016/08/15/further-simplifying-
servicing-model-for-windows-7-and-windows-8-1/. [Accessed 24 May 2017].

[146] FIRST, "Vulnerability Reporting and Data eXchange SIG (VRDX-SIG)," [Online]. Available:
https://www.first.org/global/sigs/vrdx. [Accessed 16 May 2017].

[147] D. Klinedinst, "Coordinating Vulnerabilities in IoT Devices," 27 January 2016. [Online]. Available:
https://insights.sei.cmu.edu/cert/2016/01/coordinating-vulnerabilities-in-iot-devices.html. [Accessed 16 May
2017].

[148] S. Christey Coley and B. Martin, "Buying Into the Bias: Why Vulnerability Statistics Suck," in BlackHat,
2013.

[149] MITRE, "CVE Abstraction Content Decisions: Rationale and Application," 15 June 2005. [Online].
Available: https://cve.mitre.org/cve/editorial_policies/cd_abstraction.html. [Accessed 24 May 2017].

[150] National Institute of Standards and Technology, "National Vulnerability Database," [Online]. Available:
https://nvd.nist.gov/. [Accessed 16 May 2017].

[151] CNNVD, "China National Vulnerability Database of Information Security," [Online]. Available:
http://www.cnnvd.org.cn/. [Accessed 16 May 2017].

[152] CNVD, "China National Vulnerability Database," [Online]. Available: http://www.cnvd.org.cn/. [Accessed
16 May 2017].

[153] D. Kahneman, Thinking, Fast and Slow, Macmillan, 2011.

[154] V. Driessen, "A successful Git branching model," 5 January 2010. [Online]. Available:
http://nvie.com/posts/a-successful-git-branching-model/. [Accessed 16 May 2017].

[155] H. Booth and K. Scarfone, "Vulnerability Data Model draft-booth-sacm-vuln-model-02," 25 April 2013.
[Online]. Available: https://tools.ietf.org/html/draft-booth-sacm-vuln-model-02. [Accessed 16 May 2107].

[156] A. Householder, "Vulnerability Discovery for Emerging Networked Systems," 20 November 2014. [Online].
Available: https://insights.sei.cmu.edu/cert/2014/11/-vulnerability-discovery-for-emerging-networked-
systems.html. [Accessed 16 May 2017].

https://blogs.technet.microsoft.com/windowsitpro/2016/08/15/further-simplifying-servicing-model-for-windows-7-and-windows-8-1/
https://blogs.technet.microsoft.com/windowsitpro/2016/08/15/further-simplifying-servicing-model-for-windows-7-and-windows-8-1/
https://www.first.org/global/sigs/vrdx
https://insights.sei.cmu.edu/cert/2016/01/coordinating-vulnerabilities-in-iot-devices.html
https://cve.mitre.org/cve/editorial_policies/cd_abstraction.html
https://nvd.nist.gov/
http://www.cnnvd.org.cn/
http://www.cnvd.org.cn/
http://nvie.com/posts/a-successful-git-branching-model/
https://tools.ietf.org/html/draft-booth-sacm-vuln-model-02
https://insights.sei.cmu.edu/cert/2014/11/-vulnerability-discovery-for-emerging-networked-systems.html
https://insights.sei.cmu.edu/cert/2014/11/-vulnerability-discovery-for-emerging-networked-systems.html

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 102
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[157] D. Geer, "Security of Things," 14 May 2014. [Online]. Available: http://geer.tinho.net/geer.secot.7v14.txt.
[Accessed 16 May 2017].

[158] S. Arbesman, Overcomplicated: Technology at the Limits of Comprehension, Current, 2016.

[159] A. Householder, "What's Different About Vulnerability Analysis and Discovery in Emerging Networked
Systems?" 6 January 2015. [Online]. Available: https://insights.sei.cmu.edu/cert/2015/01/-whats-different-
about-vulnerability-analysis-and-discovery-in-emerging-networked-systems.html. [Accessed 16 May 2017].

[160] JPCERT/CC and IPA, "Japan Vulnerability Notes," [Online]. Available: https://jvn.jp/en/. [Accessed 16
May 2017].

[161] O. H. Alhazmi, Y. K. Malaiya and I. Ray, "Measuring, analyzing and predicting security vulnerabilities in
software systems," Computers & Security, vol. 26, no. 3, pp. 219-228, 2007.

[162] Wikipedia, "Wicked problem," [Online]. Available: https://en.wikipedia.org/wiki/Wicked_problem.
[Accessed 5 June 2017].

http://geer.tinho.net/geer.secot.7v14.txt
https://insights.sei.cmu.edu/cert/2015/01/-whats-different-about-vulnerability-analysis-and-discovery-in-emerging-networked-systems.html
https://insights.sei.cmu.edu/cert/2015/01/-whats-different-about-vulnerability-analysis-and-discovery-in-emerging-networked-systems.html
https://jvn.jp/en/
https://en.wikipedia.org/wiki/Wicked_problem

CMU/SEI-2017-SR-022 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

August 2017
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
The CERT® Guide to
Coordinated Vulnerability Disclosure

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
Allen D. Householder
Garret Wassermann
Art Manion
Chris King

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2017-SR-022

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFLCMC/PZE/Hanscom
Enterprise Acquisition Division
20 Schilling Circle
Building 1305
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
Security vulnerabilities remain a problem for vendors and deployers of software-based systems alike. Vendors play a key role by provid-
ing fixes for vulnerabilities, but they have no monopoly on the ability to discover vulnerabilities in their products and services. Knowledge
of those vulnerabilities can increase adversarial advantage if deployers are left without recourse to remediate the risks they pose. Coor-
dinated Vulnerability Disclosure (CVD) is the process of gathering information from vulnerability finders, coordinating the sharing of that
information between relevant stakeholders, and disclosing the existence of software vulnerabilities and their mitigations to various stake-
holders including the public. The CERT Coordination Center has been coordinating the disclosure of software vulnerabilities since its
inception in 1988. This document is intended to serve as a guide to those who want to initiate, develop, or improve their own CVD capa-
bility. In it, the reader will find an overview of key principles underlying the CVD process, a survey of CVD stakeholders and their roles,
and a description of CVD process phases, as well as advice concerning operational considerations and problems that may arise in the
provision of CVD and related services.

S14. SUBJECT TERMS
Coordinated Vulnerability Disclosure, CVD, vulnerability response process, vulnerability report,
CERT-CC, CSIRT, PSIRT, software vulnerability, software security

15. NUMBER OF PAGES
121

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Table of Contents
	List of Figures
	List of Tables
	Preface
	About This Report

	Acknowledgments
	Executive Summary
	Software-based products and services have vulnerabilities—conditions or behaviors that allow the violation of an explicit or implicit security policy. This should come as no surprise to those familiar with software. What many find surprising nowadays ...
	Adversaries take advantage of vulnerabilities to achieve goals at odds with the developers, deployers, users, and other stakeholders of the systems we depend on. Notifying the public that a problem exists without offering a specific course of action t...
	Coordinated Vulnerability Disclosure (CVD) is a process for reducing adversary advantage while an information security vulnerability is being mitigated. CVD is a process, not an event. Releasing a patch or publishing a document are important events wi...
	CVD participants can be thought of as repeatedly asking these questions: What actions should I take in response to knowledge of this vulnerability in this product? Who else needs to know what, and when do they need to know it? The CVD process for a vu...
	Principles of CVD

	Section 2 covers principles of CVD, including the following:
	Roles in CVD

	CVD begins with finding vulnerabilities and ends with the deployment of patches or mitigations. As a result, several distinct roles and stakeholders are involved in the CVD process. These include the following:
	It is possible and often the case that individuals and organizations play multiple roles. For example, a cloud service provider might act as both vendor and deployer, while a researcher might act as both finder and reporter. A vendor may also be both ...
	Reasons to engage a coordinator include reporter inexperience, reporter capacity, multiparty coordination cases, disputes among CVD participants, and vulnerabilities having significant infrastructure impacts.
	Users, integrators, cloud and application service providers, Internet of Things (IoT) and mobile vendors, and governments are also stakeholders in the CVD process. We cover these roles and stakeholders in more detail in Section 3.
	Phases of CVD

	The CVD process can be broadly defined as a set of phases, as described in Section 4. Although these phases may sometimes occur out of order, or even recur within the handling of a single vulnerability case (for example, each recipient of a case may n...
	CVD Process Variation
	Troubleshooting CVD
	Operational Considerations
	Open Problems in CVD
	Conclusion and Appendices

	1 Introduction
	1.1 Coordinated Vulnerability Disclosure is a Process, Not an Event
	1.2 CVD Context and Terminology Notes
	1.2.1 Vulnerability
	1.2.2 Exploits, Malware, and Incidents
	1.2.3 Vulnerability Response (VR)
	1.2.4 Vulnerability Discovery
	1.2.5 Coordinated Vulnerability Disclosure
	1.2.5.1 Who is Responsible Here?

	1.2.6 Vulnerability Management (VM)
	1.2.6.1 Vulnerability Analysis and Resolution (VAR)

	1.2.7 Products and Instances
	1.2.8 Incident vs. Vulnerability Response

	1.3 Why Coordinate Vulnerability Disclosures?
	1.4 Previewing the Remainder of this Document

	2 Principles of Coordinated Vulnerability Disclosure
	2.1 Reduce Harm
	2.2 Presume Benevolence
	2.3 Avoid Surprise
	2.4 Incentivize Desired Behavior
	2.5 Ethical Considerations
	2.5.1 Ethics in Related Professional Societies
	2.5.2 Journalism Ethics

	2.6 Process Improvement
	2.6.1 CVD and the Security Feedback Loop
	2.6.2 Improving the CVD Process Itself

	2.7 CVD as a Wicked Problem

	3 Roles in CVD
	3.1 Finder
	3.2 Reporter
	3.3 Vendor
	3.3.1 Vendor as the Introducer of Vulnerabilities
	3.3.2 Vendor Vulnerability Response Process
	3.3.2.1 Evaluating the Vendor Security Response Process

	3.3.3 Vendor Sub-Roles
	3.3.3.1 PSIRT
	3.3.3.2 Developers
	3.3.3.3 Patch Originator vs. Downstream Vendor
	3.3.3.4 Process Improvement

	3.4 Deployer
	3.4.1 Deployer Vulnerability Response Process
	3.4.1.1 Become Aware
	3.4.1.2 Prioritize Response
	3.4.1.3 Test the Solution
	3.4.1.4 Plan the Deployment
	3.4.1.5 Execute the Plan

	3.5 Coordinator
	3.5.1 Computer Security Incident Response Team (CSIRT)
	3.5.2 CSIRT with National Responsibility
	3.5.3 Product Security Incident Response Team (PSIRT)
	3.5.4 Security Research Organizations
	3.5.5 Bug Bounties and Commercial Brokers
	3.5.6 Information Sharing and Analysis Organizations (ISAOs) and Centers (ISACs)
	3.5.7 Reasons to Engage a Coordinator
	3.5.7.1 Reporter Inexperience
	3.5.7.2 Reporter Capacity
	3.5.7.3 Multiple Vendors Involved
	3.5.7.4 CVD Disputes
	3.5.7.5 Major Infrastructure Impacts

	3.6 Other Roles and Variations
	3.6.1 Users
	3.6.2 Integrator
	3.6.3 Cloud and Application Service Providers
	3.6.4 Internet of Things
	3.6.5 Mobile Platforms and Applications
	3.6.6 Governments

	4 Phases of CVD
	4.1 Discovery
	4.1.1 Why Look for Vulnerabilities?
	4.1.2 Avoid Unnecessary Risk in Finding Vulnerabilities
	4.1.2.1 Operational Risk
	4.1.2.2 Safety Risk
	4.1.2.3 Legal Risk

	4.2 Reporting

	No matter who you are, most of the smartest people work for someone else.
	4.2.1 Create Secure Channels for Reporting
	4.2.2 Encourage Reporting
	4.2.3 Reduce Friction in the Reporting Process
	4.2.4 Providing Useful Information
	4.3 Validation and Triage
	4.3.1 Validating Reports
	4.3.1.1 Recognizing High-Quality Reports

	4.3.2 Triage Heuristics

	4.4 Remediation
	4.4.1 Isolating the Problem
	4.4.2 Fix the Problem
	4.4.3 Mitigate What You Cannot Fix

	4.5 Gaining Public Awareness
	4.5.1 Prepare and Circulate a Draft
	4.5.2 Publishing
	4.5.3 Vulnerability Identifiers Improve Response
	4.5.4 Where to Publish

	4.6 Promote Deployment
	4.6.1 Amplify the Message
	4.6.2 Post-Publication Monitoring

	5 Process Variation Points
	5.1 Choosing a Disclosure Policy
	5.2 Disclosure Choices
	5.3 Two-Party CVD
	5.4 Multiparty CVD
	5.4.1 Multiple Finders / Reporters
	5.4.2 Complicated Supply Chains
	5.4.2.1 Vertical Supply Chain
	5.4.2.2 Horizontal Supply Chain

	5.4.3 Mass Notifications for Multiparty CVD

	5.5 Response Pacing and Synchronization
	5.5.1 When One Party Wants to Release Early
	5.5.2 Communication Topology
	5.5.3 Motivating Synchronized Release

	5.6 Maintaining Pre-Disclosure Secrecy
	5.6.1 Coordinating Further Downstream
	5.6.2 Do You Include Deployers?
	5.6.3 Complex Communications Reduce Trust

	5.7 Disclosure Timing
	5.7.1 Conference Schedules and Disclosure Timing
	5.7.2 Vendor Reputation and Willingness to Cooperate
	5.7.3 Declarative Disclosure Policies Reduce Uncertainty
	5.7.4 Diverting from the Plan

	Reasons to release early include
	Reasons to hold back release include
	5.7.5 Releasing Partial Information Can Help Adversaries

	6 Troubleshooting CVD
	6.1 Unable to Find Vendor Contact
	6.2 Unresponsive Vendor
	6.3 Somebody Stops Replying
	6.4 Intentional or Accidental Leaks
	6.5 Independent Discovery
	6.6 Active Exploitation
	6.7 Relationships that Go Sideways
	6.8 Hype, Marketing, and Unwanted Attention
	6.8.1 The Streisand Effect

	6.9 What to Do When Things Go Wrong
	6.9.1 Keep Calm and Carry On
	6.9.2 Avoid Legal Entanglements
	6.9.3 Recognize the Helpers
	6.9.4 Consider Publishing Early
	6.9.5 Engage a Third-Party Coordinator
	6.9.6 Learn from the Experience

	7 Operational Considerations
	7.1 Tools of the Trade
	7.1.1 Secure Communication Channels
	7.1.1.1 Email
	7.1.1.2 Secure Email
	7.1.1.3 Web Forms and Portals

	7.1.2 Contact Management
	7.1.3 Bug Bounty Platforms
	7.1.4 Case and Bug Tracking
	7.1.5 Code and System Inventories
	7.1.6 Test Bench and Virtualization

	7.2 Operational Security
	7.2.1 PGP/GPG Key Management
	7.2.1.1 Use a Passphrase and Control Access
	7.2.1.2 Use Revocation Certificates and Key Rotation
	7.2.1.3 Practical Tips for Key Management

	7.2.2 Handling Sensitive Data
	7.2.2.1 Traffic Light Protocol (TLP)

	7.2.3 Don’t Automatically Trust Reports

	7.3 CVD Staffing Considerations
	7.3.1 Beware Analyst Burnout

	8 Open Problems in CVD
	8.1 Vulnerability IDs and DBs
	8.1.1 On the Complexities of Vulnerability Identity
	8.1.2 What CVE Isn’t
	8.1.3 Every Vulnerability Database Makes Choices
	8.1.4 Where We Are vs. Where We Need to Be
	8.1.5 Vulnerability IDs, Fast and Slow
	8.1.6 A Path Toward VDB Interoperability
	8.1.7 Looking Ahead

	8.2 IoT and CVD
	8.2.1 Black Boxes
	8.2.2 Unrecognized Subcomponents
	8.2.3 Long-Lived and Hard-to-Patch
	8.2.4 New Interfaces Bring New Threats
	8.2.5 Summarizing the IoT’s Impact on CVD

	9 Conclusion
	Appendix A – On the Internet of Things and Vulnerability Analysis
	IoT Vulnerability Discovery
	IoT Vulnerability Analysis
	IoT Parting Thoughts
	Dan Geer [157] puts it thus:
	Appendix B – Traffic Light Protocol
	This appendix is reproduced from https://www.first.org/tlp [140].
	FIRST Standards Definitions and Usage Guidance — Version 1.0
	1. Introduction
	2. Usage
	3. TLP definitions
	Notes:
	Appendix C – Sample Vulnerability Report Form
	Vulnerability Report
	TLP:RED / TLP:AMBER / TLP:GREEN / TLP: WHITE
	Vulnerability
	Disclosure Plans
	Reporter
	Additional Information
	Appendix D – Sample Vulnerability Disclosure Document
	Vulnerability Disclosure Document
	Overview
	Vulnerability ID
	Description
	Impact
	CVSS Score
	Resolution
	Reporter
	Author and/or Contact Info
	Disclosure Timeline
	References
	Appendix E – Disclosure Policy Templates
	NTIA Early Stage Template
	Open Source Vulnerability Disclosure Framework
	U.S. GSA Vulnerability Disclosure Policy
	ENISA Good Practice Guide on Vulnerability Disclosure
	U.S. Department of Justice Framework for a Vulnerability Disclosure Program for Online Systems
	Where to Look for More
	Bibliography

